/* * Copyright (c) 2016, 2017 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/Utils.h" #include "arm_compute/core/FixedPoint.h" #include #include #include #include #include #include using namespace arm_compute; std::string arm_compute::build_information() { static const std::string information = #include "arm_compute_version.embed" ; return information; } std::string arm_compute::read_file(const std::string &filename, bool binary) { std::string out; std::ifstream fs; try { fs.exceptions(std::ifstream::failbit | std::ifstream::badbit); std::ios_base::openmode mode = std::ios::in; if(binary) { mode |= std::ios::binary; } fs.open(filename, mode); // Go to the end of the file fs.seekg(0, std::ios::end); // Reserve the memory required to store the file's content out.reserve(fs.tellg()); // Go back to the beginning of the file fs.seekg(0, std::ios::beg); // Copy the content of the file out.assign(std::istreambuf_iterator(fs), std::istreambuf_iterator()); } catch(const std::ifstream::failure &e) { ARM_COMPUTE_ERROR("Accessing %s: %s", filename.c_str(), e.what()); } return out; } const std::string &arm_compute::string_from_format(Format format) { static std::map formats_map = { { Format::UNKNOWN, "UNKNOWN" }, { Format::U8, "U8" }, { Format::S16, "S16" }, { Format::U16, "U16" }, { Format::S32, "S32" }, { Format::U32, "U32" }, { Format::F16, "F16" }, { Format::F32, "F32" }, { Format::UV88, "UV88" }, { Format::RGB888, "RGB888" }, { Format::RGBA8888, "RGBA8888" }, { Format::YUV444, "YUV444" }, { Format::YUYV422, "YUYV422" }, { Format::NV12, "NV12" }, { Format::NV21, "NV21" }, { Format::IYUV, "IYUV" }, { Format::UYVY422, "UYVY422" } }; return formats_map[format]; } const std::string &arm_compute::string_from_channel(Channel channel) { static std::map channels_map = { { Channel::UNKNOWN, "UNKNOWN" }, { Channel::R, "R" }, { Channel::G, "G" }, { Channel::B, "B" }, { Channel::A, "A" }, { Channel::Y, "Y" }, { Channel::U, "U" }, { Channel::V, "V" }, { Channel::C0, "C0" }, { Channel::C1, "C1" }, { Channel::C2, "C2" }, { Channel::C3, "C3" } }; return channels_map[channel]; } const std::string &arm_compute::string_from_data_type(DataType dt) { static std::map dt_map = { { DataType::UNKNOWN, "UNKNOWN" }, { DataType::S8, "S8" }, { DataType::U8, "U8" }, { DataType::QS8, "QS8" }, { DataType::S16, "S16" }, { DataType::U16, "U16" }, { DataType::QS16, "QS16" }, { DataType::S32, "S32" }, { DataType::U32, "U32" }, { DataType::S64, "S64" }, { DataType::U64, "U64" }, { DataType::F16, "F16" }, { DataType::F32, "F32" }, { DataType::F64, "F64" }, { DataType::SIZET, "SIZET" }, }; return dt_map[dt]; } const std::string &arm_compute::string_from_activation_func(ActivationLayerInfo::ActivationFunction act) { static std::map act_map = { { ActivationLayerInfo::ActivationFunction::ABS, "ABS" }, { ActivationLayerInfo::ActivationFunction::LINEAR, "LINEAR" }, { ActivationLayerInfo::ActivationFunction::LOGISTIC, "LOGISTIC" }, { ActivationLayerInfo::ActivationFunction::RELU, "RELU" }, { ActivationLayerInfo::ActivationFunction::BOUNDED_RELU, "BRELU" }, { ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU, "LU_BRELU" }, { ActivationLayerInfo::ActivationFunction::LEAKY_RELU, "LRELU" }, { ActivationLayerInfo::ActivationFunction::SOFT_RELU, "SRELU" }, { ActivationLayerInfo::ActivationFunction::SQRT, "SQRT" }, { ActivationLayerInfo::ActivationFunction::SQUARE, "SQUARE" }, { ActivationLayerInfo::ActivationFunction::TANH, "TANH" }, }; return act_map[act]; } const std::string &arm_compute::string_from_matrix_pattern(MatrixPattern pattern) { static std::map pattern_map = { { MatrixPattern::BOX, "BOX" }, { MatrixPattern::CROSS, "CROSS" }, { MatrixPattern::DISK, "DISK" }, { MatrixPattern::OTHER, "OTHER" }, }; return pattern_map[pattern]; } const std::string &arm_compute::string_from_non_linear_filter_function(NonLinearFilterFunction function) { static std::map func_map = { { NonLinearFilterFunction::MAX, "MAX" }, { NonLinearFilterFunction::MEDIAN, "MEDIAN" }, { NonLinearFilterFunction::MIN, "MIN" }, }; return func_map[function]; } const std::string &arm_compute::string_from_interpolation_policy(InterpolationPolicy policy) { static std::map interpolation_policy_map = { { InterpolationPolicy::AREA, "AREA" }, { InterpolationPolicy::BILINEAR, "BILINEAR" }, { InterpolationPolicy::NEAREST_NEIGHBOR, "NEAREST_NEIGHBOUR" }, }; return interpolation_policy_map[policy]; } const std::string &arm_compute::string_from_border_mode(BorderMode border_mode) { static std::map border_mode_map = { { BorderMode::UNDEFINED, "UNDEFINED" }, { BorderMode::CONSTANT, "CONSTANT" }, { BorderMode::REPLICATE, "REPLICATE" }, }; return border_mode_map[border_mode]; } const std::string &arm_compute::string_from_norm_type(NormType type) { static std::map norm_type_map = { { NormType::IN_MAP_1D, "IN_MAP_1D" }, { NormType::IN_MAP_2D, "IN_MAP_2D" }, { NormType::CROSS_MAP, "CROSS_MAP" }, }; return norm_type_map[type]; } const std::string &arm_compute::string_from_pooling_type(PoolingType type) { static std::map pool_type_map = { { PoolingType::MAX, "MAX" }, { PoolingType::AVG, "AVG" }, { PoolingType::L2, "L2" }, }; return pool_type_map[type]; } std::string arm_compute::lower_string(const std::string &val) { std::string res = val; std::transform(res.begin(), res.end(), res.begin(), ::tolower); return res; } TensorShape arm_compute::deconvolution_output_shape(const std::pair &out_dims, TensorShape input, TensorShape weights) { TensorShape out_shape(input); out_shape.set(0, out_dims.first); out_shape.set(1, out_dims.second); out_shape.set(2, weights[3]); return out_shape; } const std::pair arm_compute::deconvolution_output_dimensions( unsigned int in_width, unsigned int in_height, unsigned int kernel_width, unsigned int kernel_height, unsigned int padx, unsigned int pady, unsigned int ax, unsigned int ay, float upscalex, float upscaley, DimensionRoundingType round) { ARM_COMPUTE_ERROR_ON(in_width < 1 || in_height < 1); ARM_COMPUTE_ERROR_ON(((in_width - 1) * upscalex + kernel_width + ax) < 2.f * padx); ARM_COMPUTE_ERROR_ON(((in_height - 1) * upscaley + kernel_height + ay) < 2.f * pady); const float fw = (in_width - 1) * upscalex - 2.f * padx + kernel_width + ax; const float fh = (in_height - 1) * upscaley - 2.f * pady + kernel_height + ay; int w = 0; int h = 0; switch(round) { case DimensionRoundingType::FLOOR: w = std::floor(fw); h = std::floor(fh); break; case DimensionRoundingType::CEIL: w = std::ceil(fw); h = std::ceil(fh); break; default: ARM_COMPUTE_ERROR("Not supported"); break; } return std::make_pair(w, h); } const std::pair arm_compute::scaled_dimensions(unsigned int width, unsigned int height, unsigned int kernel_width, unsigned int kernel_height, const PadStrideInfo &pad_stride_info) { const unsigned int pad_left = pad_stride_info.pad_left(); const unsigned int pad_top = pad_stride_info.pad_top(); const unsigned int pad_right = pad_stride_info.pad_right(); const unsigned int pad_bottom = pad_stride_info.pad_bottom(); const unsigned int stride_x = pad_stride_info.stride().first; const unsigned int stride_y = pad_stride_info.stride().second; unsigned int w = 0; unsigned int h = 0; switch(pad_stride_info.round()) { case DimensionRoundingType::FLOOR: w = static_cast(std::floor((static_cast(width + pad_left + pad_right - kernel_width) / stride_x) + 1)); h = static_cast(std::floor((static_cast(height + pad_top + pad_bottom - kernel_height) / stride_y) + 1)); break; case DimensionRoundingType::CEIL: w = static_cast(std::ceil((static_cast(width + pad_left + pad_right - kernel_width) / stride_x) + 1)); h = static_cast(std::ceil((static_cast(height + pad_top + pad_bottom - kernel_height) / stride_y) + 1)); break; default: ARM_COMPUTE_ERROR("Unsupported rounding type"); } // Make sure that border operations will start from inside the input and not the padded area if(((w - 1) * stride_x) >= (width + pad_left)) { --w; } if(((h - 1) * stride_y) >= (height + pad_top)) { --h; } ARM_COMPUTE_ERROR_ON(((w - 1) * stride_x) >= (width + pad_left)); ARM_COMPUTE_ERROR_ON(((h - 1) * stride_y) >= (height + pad_top)); return std::make_pair(w, h); } void arm_compute::print_consecutive_elements(std::ostream &s, DataType dt, const uint8_t *ptr, unsigned int n, int stream_width, const std::string &element_delim) { switch(dt) { case DataType::U8: print_consecutive_elements_impl(s, ptr, n, stream_width, element_delim); break; case DataType::QS8: case DataType::S8: print_consecutive_elements_impl(s, reinterpret_cast(ptr), n, stream_width, element_delim); break; case DataType::U16: print_consecutive_elements_impl(s, reinterpret_cast(ptr), n, stream_width, element_delim); break; case DataType::QS16: case DataType::S16: print_consecutive_elements_impl(s, reinterpret_cast(ptr), n, stream_width, element_delim); break; case DataType::U32: print_consecutive_elements_impl(s, reinterpret_cast(ptr), n, stream_width, element_delim); break; case DataType::S32: print_consecutive_elements_impl(s, reinterpret_cast(ptr), n, stream_width, element_delim); break; case DataType::F32: print_consecutive_elements_impl(s, reinterpret_cast(ptr), n, stream_width, element_delim); break; case DataType::F16: break; default: ARM_COMPUTE_ERROR("Undefined element size for given data type"); } } int arm_compute::max_consecutive_elements_display_width(std::ostream &s, DataType dt, const uint8_t *ptr, unsigned int n) { switch(dt) { case DataType::U8: return max_consecutive_elements_display_width_impl(s, ptr, n); case DataType::QS8: case DataType::S8: return max_consecutive_elements_display_width_impl(s, reinterpret_cast(ptr), n); case DataType::U16: return max_consecutive_elements_display_width_impl(s, reinterpret_cast(ptr), n); case DataType::QS16: case DataType::S16: return max_consecutive_elements_display_width_impl(s, reinterpret_cast(ptr), n); case DataType::U32: return max_consecutive_elements_display_width_impl(s, reinterpret_cast(ptr), n); case DataType::S32: return max_consecutive_elements_display_width_impl(s, reinterpret_cast(ptr), n); case DataType::F32: return max_consecutive_elements_display_width_impl(s, reinterpret_cast(ptr), n); case DataType::F16: return 0; default: ARM_COMPUTE_ERROR("Undefined element size for given data type"); } }