/* * Copyright (c) 2017 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "transforms/output.hpp" #include "winograd_gemm.hpp" #include "arm.hpp" namespace winograd { using Transform = WinogradGEMM<2, 2, 3, 3>::OutputTransform; template <> template <> int Transform::ops_performed(const Tensor4DShape &shape) { // NOTE: Cost in FLOPs rather than instructions or uops. const int tile_M = iceildiv(shape.n_rows, 2); const int tile_N = iceildiv(shape.n_cols, 2); return 24 * tile_M * tile_N * shape.n_channels; } /* F(2x2, 3x3) constructs 2x2 output tiles from a 3x3 convolution. Since we use * enough tiles to cover the output space each output tile may contain 0 or 1 * padded values to the right and bottom columns or rows of the tile, e.g.: * * ___ ___ * | | | X| * |___| |__X| * * ___ ___ * | | | X| * |X_X| |X_X| * * * We provide a specialised output transform for each of these instances. * Consequently we below construct an array of the various padding options, the * array contains pointers to the specific implementations. */ template <> template <> template void Transform::process_tile( const int n_channels, const float* const matrix_base, const int matrix_stride, const float* const biases, float* const output, const int output_row_stride, const int output_col_stride ) { constexpr int cells_i = 2 - pad_bottom; constexpr int cells_j = 2 - pad_right; // Construct a map to the output cells float *outptrs[cells_i][cells_j]; for (int i = 0; i < cells_i; i++) { for (int j = 0; j < cells_j; j++) { outptrs[i][j] = output + i*output_row_stride + j*output_col_stride; } } const float *inptr = matrix_base; const float *bptr = biases; // For each channel of the output int channels_remaining = n_channels; #ifdef __aarch64__ for (; channels_remaining >= 4; channels_remaining -= 4) { // Matrices used and computed during this transform float32x4_t F[4][4], FZ[4][2], f[2][2], b; // Read a 4x4 tile in the Winograd domain for (int i = 0, m = 0; i < 4; i++) { for (int j = 0; j < 4; j++, m++) { F[i][j] = vld1q_f32(inptr + m*matrix_stride); } } inptr += 4; // Compute the matrix F Z for (int i = 0; i < 4; i++) { // FZ[i][0] = F[i][0] + F[i][1] + F[i][2]; FZ[i][0] = vaddq_f32(vaddq_f32(F[i][0], F[i][1]), F[i][2]); // FZ[i][1] = F[i][1] - F[i][2] - F[i][3]; FZ[i][1] = vsubq_f32(vsubq_f32(F[i][1], F[i][2]), F[i][3]); } // Compute the output tile f = ZT F Z for (int j = 0; j < 2; j++) { // f[0][j] = FZ[0][j] + FZ[1][j] + FZ[2][j]; f[0][j] = vaddq_f32(vaddq_f32(FZ[0][j], FZ[1][j]), FZ[2][j]); // f[1][j] = FZ[1][j] - FZ[2][j] - FZ[3][j]; f[1][j] = vsubq_f32(vsubq_f32(FZ[1][j], FZ[2][j]), FZ[3][j]); } // Load the bias vector b = vld1q_f32(bptr); bptr += 4; // Write out the output tile for (int i = 0; i < cells_i; i++) { for (int j = 0; j < cells_j; j++) { vst1q_f32(outptrs[i][j], vaddq_f32(f[i][j], b)); outptrs[i][j] += 4; } } } #endif // __aarch64__ #ifdef __arm_any__ for (; channels_remaining >= 2; channels_remaining -= 2) { // Matrices used and computed during this transform float32x2_t F[4][4], FZ[4][2], f[2][2], b; // Read a 4x4 tile in the Winograd domain for (int i = 0, m = 0; i < 4; i++) { for (int j = 0; j < 4; j++, m++) { F[i][j] = vld1_f32(inptr + m*matrix_stride); } } inptr += 2; // Compute the matrix F Z for (int i = 0; i < 4; i++) { // FZ[i][0] = F[i][0] + F[i][1] + F[i][2]; FZ[i][0] = vadd_f32(vadd_f32(F[i][0], F[i][1]), F[i][2]); // FZ[i][1] = F[i][1] - F[i][2] - F[i][3]; FZ[i][1] = vsub_f32(vsub_f32(F[i][1], F[i][2]), F[i][3]); } // Compute the output tile f = ZT F Z for (int j = 0; j < 2; j++) { // f[0][j] = FZ[0][j] + FZ[1][j] + FZ[2][j]; f[0][j] = vadd_f32(vadd_f32(FZ[0][j], FZ[1][j]), FZ[2][j]); // f[1][j] = FZ[1][j] - FZ[2][j] - FZ[3][j]; f[1][j] = vsub_f32(vsub_f32(FZ[1][j], FZ[2][j]), FZ[3][j]); } // Load the bias vector b = vld1_f32(bptr); bptr += 2; // Write out the output tile for (int i = 0; i < cells_i; i++) { for (int j = 0; j < cells_j; j++) { vst1_f32(outptrs[i][j], vadd_f32(f[i][j], b)); outptrs[i][j] += 2; } } } #endif // __arm_any__ for (; channels_remaining; channels_remaining--) { // Matrices used and computed during this transform float F[4][4], FZ[4][2], f[2][2], b; // Read a 4x4 tile in the Winograd domain for (int i = 0, m = 0; i < 4; i++) { for (int j = 0; j < 4; j++, m++) { F[i][j] = *(inptr + m*matrix_stride); } } inptr++; // Compute the matrix F Z for (int i = 0; i < 4; i++) { FZ[i][0] = F[i][0] + F[i][1] + F[i][2]; FZ[i][1] = F[i][1] - F[i][2] - F[i][3]; } // Compute the output tile f = ZT F Z for (int j = 0; j < 2; j++) { f[0][j] = FZ[0][j] + FZ[1][j] + FZ[2][j]; f[1][j] = FZ[1][j] - FZ[2][j] - FZ[3][j]; } // Load the bias b = *(bptr++); // Write out the output tile for (int i = 0; i < cells_i; i++) { for (int j = 0; j < cells_j; j++) { *(outptrs[i][j]++) = f[i][j] + b; } } } } template <> template <> const Transform::TileFn Transform::tile_fns[max_pad_bottom][max_pad_right] = { { Transform::template process_tile<0, 0>, // No padding Transform::template process_tile<0, 1>, // Right padding }, { Transform::template process_tile<1, 0>, // Bottom padding Transform::template process_tile<1, 1>, // Bottom and right padding } }; template struct WinogradGEMM<2, 2, 3, 3>::OutputTransform; } // namespace winograd