/* * Copyright (c) 2017 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "transforms/input.hpp" #include "winograd_gemm.hpp" #include "arm.hpp" namespace winograd { using Transform = WinogradGEMM<2, 2, 3, 3>::InputTransform; /****************************************************************************** * Cost methods for the input transform. * ===================================== */ template <> template <> int Transform::ops_performed(const Tensor4DShape &input_shape) { // NOTE: Cost in FLOPs rather than instructions or uops. const int tile_M = iceildiv(input_shape.n_rows, inner_tile_rows); const int tile_N = iceildiv(input_shape.n_cols, inner_tile_cols); return 16 * 16 * tile_M * tile_N * input_shape.n_channels; } /*****************************************************************************/ /***************************************************************************** * F(2x2, 3x3) implies the use of a 4x4 input tile. Such tiles can require a * variety of padding types. For example, tiles at the top and left of an image * can require one row or column of padding on their top and left sides if the * padding type is SAME (where X represents a padded value): * * _______ _______ * |X X X X| |X X X X| * |X | | | . . . * |X | | | * |X______| |_______| * _______ * |X | . * |X | . . . . * |X | . * |X______| * * For tiles near the right or bottom of the image it is more complicated. Such * tiles might require padding by 0 or 1 rows or columns if the padding type is * VALID or 1 or 2 rows or columns if the padding type is SAME: * * _______ _______ _______ _______ * |X X X X| |X X X X| |X X X X| |X X X X| * |X | | | | X| | X X| * |X | | | | X| | X X| * |X______| |_______| |______X| |____X_X| * _______ _______ _______ _______ * |X | | | | X| | X X| * |X | | | | X| | X X| * |X | | | | X| | X X| * |X______| |_______| |______X| |____X_X| * _______ _______ _______ _______ * |X | | | | X| | X X| * |X | | | | X| | X X| * |X | | | | X| | X X| * |X_X_X_X| |X_X_X_X| |X_X_X_X| |X_X_X_X| * _______ _______ _______ _______ * |X | | | | X| | X X| * |X | | | | X| | X X| * |X X X X| |X X X X| |X X X X| |X X X X| * |X_X_X_X| |X_X_X_X| |X_X_X_X| |X_X_X_X| * * Additional tiles are required for especially small input images. * * Build an array of the specialised methods that deal with each of the * different padding combinations which may be required. These padding * constraints are the space: * * Padding top in {0, 1} * Padding left in {0, 1} * Padding bottom in {0, 1, 2} * Padding right in {0, 1, 2} */ template <> template <> template void Transform::process_tile( int n_channels, const float* const input_base, const int input_row_stride, const int input_col_stride, float* const matrix_base, const int matrix_stride ) { constexpr int inner_tile_i = 4, inner_tile_j = 4; constexpr int cells_i = inner_tile_i - pad_bottom; constexpr int cells_j = inner_tile_i - pad_right; float *outptr = matrix_base; // Get pointers into the input tile const float *x_ptrs[inner_tile_i][inner_tile_j]; for (int i = pad_top, xi = 0; i < cells_i; i++, xi++) { // Get a pointer into the row const float* const row_ptr = input_base + xi*input_row_stride; for (int j = pad_left, xj = 0; j < cells_j; j++, xj++) { x_ptrs[i][j] = row_ptr + xj*input_col_stride; } } // Matrices used/computed in this kernel. float x[inner_tile_i][inner_tile_j]; float XTx[inner_tile_i][inner_tile_j]; float U[inner_tile_i][inner_tile_j]; for (int i = 0; i < inner_tile_i; i++) { for (int j = 0; j < inner_tile_j; j++) { x[i][j] = XTx[i][j] = 0.0f; } } // Perform the Winograd input transformation for each channel in the input // tensor. int channels_remaining = n_channels; #ifdef __aarch64__ for (; channels_remaining >= 4; channels_remaining -= 4) { // Matrices used/computed in this kernel. float32x4_t x[inner_tile_i][inner_tile_j]; float32x4_t XTx[inner_tile_i][inner_tile_j]; float32x4_t U[inner_tile_i][inner_tile_j]; for (int i = 0; i < inner_tile_i; i++) { for (int j = 0; j < inner_tile_j; j++) { x[i][j] = vdupq_n_f32(0.0f); XTx[i][j] = vdupq_n_f32(0.0f); } } // Load x for (int i = pad_top; i < cells_i; i++) { for (int j = pad_left; j < cells_j; j++) { x[i][j] = vld1q_f32(x_ptrs[i][j]); x_ptrs[i][j] += 4; } } // Compute XT . x for (int j = pad_left; j < cells_j; j++) { // XTx[0][j] = x[0][j] - x[2][j]; XTx[0][j] = vsubq_f32(x[0][j], x[2][j]); // XTx[1][j] = x[1][j] + x[2][j]; XTx[1][j] = vaddq_f32(x[1][j], x[2][j]); // XTx[2][j] = x[2][j] - x[1][j]; XTx[2][j] = vsubq_f32(x[2][j], x[1][j]); // XTx[3][j] = x[1][j] - x[3][j]; XTx[3][j] = vsubq_f32(x[1][j], x[3][j]); } // Compute U = XT . x . X for (int i = 0; i < inner_tile_i; i++) { // U[i][0] = XTx[i][0] - XTx[i][2]; U[i][0] = vsubq_f32(XTx[i][0], XTx[i][2]); // U[i][1] = XTx[i][1] + XTx[i][2]; U[i][1] = vaddq_f32(XTx[i][1], XTx[i][2]); // U[i][2] = XTx[i][2] - XTx[i][1]; U[i][2] = vsubq_f32(XTx[i][2], XTx[i][1]); // U[i][3] = XTx[i][1] - XTx[i][3]; U[i][3] = vsubq_f32(XTx[i][1], XTx[i][3]); } // Store the transformed matrix for (int i = 0, m = 0; i < inner_tile_i; i++) { for (int j = 0; j < inner_tile_j; j++, m++) { vst1q_f32(outptr + m*matrix_stride, U[i][j]); } } outptr += 4; } #endif // __aarch64__ #ifdef __arm_any__ for (; channels_remaining >= 2; channels_remaining -= 2) { // Matrices used/computed in this kernel. float32x2_t x[inner_tile_i][inner_tile_j]; float32x2_t XTx[inner_tile_i][inner_tile_j]; float32x2_t U[inner_tile_i][inner_tile_j]; for (int i = 0; i < inner_tile_i; i++) { for (int j = 0; j < inner_tile_j; j++) { x[i][j] = vdup_n_f32(0.0f); XTx[i][j] = vdup_n_f32(0.0f); } } // Load x for (int i = pad_top; i < cells_i; i++) { for (int j = pad_left; j < cells_j; j++) { x[i][j] = vld1_f32(x_ptrs[i][j]); x_ptrs[i][j] += 2; } } // Compute XT . x for (int j = pad_left; j < cells_j; j++) { // XTx[0][j] = x[0][j] - x[2][j]; XTx[0][j] = vsub_f32(x[0][j], x[2][j]); // XTx[1][j] = x[1][j] + x[2][j]; XTx[1][j] = vadd_f32(x[1][j], x[2][j]); // XTx[2][j] = x[2][j] - x[1][j]; XTx[2][j] = vsub_f32(x[2][j], x[1][j]); // XTx[3][j] = x[1][j] - x[3][j]; XTx[3][j] = vsub_f32(x[1][j], x[3][j]); } // Compute U = XT . x . X for (int i = 0; i < inner_tile_i; i++) { // U[i][0] = XTx[i][0] - XTx[i][2]; U[i][0] = vsub_f32(XTx[i][0], XTx[i][2]); // U[i][1] = XTx[i][1] + XTx[i][2]; U[i][1] = vadd_f32(XTx[i][1], XTx[i][2]); // U[i][2] = XTx[i][2] - XTx[i][1]; U[i][2] = vsub_f32(XTx[i][2], XTx[i][1]); // U[i][3] = XTx[i][1] - XTx[i][3]; U[i][3] = vsub_f32(XTx[i][1], XTx[i][3]); } // Store the transformed matrix for (int i = 0, m = 0; i < inner_tile_i; i++) { for (int j = 0; j < inner_tile_j; j++, m++) { vst1_f32(outptr + m*matrix_stride, U[i][j]); } } outptr += 2; } #endif // __arm_any__ for (; channels_remaining; channels_remaining--) { // Load x for (int i = pad_top; i < cells_i; i++) { for (int j = pad_left; j < cells_j; j++) { x[i][j] = *(x_ptrs[i][j]++); } } // Compute XT . x for (int j = pad_left; j < cells_j; j++) { XTx[0][j] = x[0][j] - x[2][j]; XTx[1][j] = x[1][j] + x[2][j]; XTx[2][j] = x[2][j] - x[1][j]; XTx[3][j] = x[1][j] - x[3][j]; } // Compute U = XT . x . X for (int i = 0; i < inner_tile_i; i++) { U[i][0] = XTx[i][0] - XTx[i][2]; U[i][1] = XTx[i][1] + XTx[i][2]; U[i][2] = XTx[i][2] - XTx[i][1]; U[i][3] = XTx[i][1] - XTx[i][3]; } // Store the transformed matrix for (int i = 0, m = 0; i < inner_tile_i; i++) { for (int j = 0; j < inner_tile_j; j++, m++) { *(outptr + m*matrix_stride) = U[i][j]; } } outptr++; } } template <> template <> const Transform::TileFn Transform::tile_fns[2][2][max_pad_bottom][max_pad_right] = { { { { Transform::template process_tile<0, 0, 0, 0>, // No padding Transform::template process_tile<0, 0, 0, 1>, // Right Transform::template process_tile<0, 0, 0, 2>, // Right }, { Transform::template process_tile<0, 0, 1, 0>, // Bottom Transform::template process_tile<0, 0, 1, 1>, // Bottom-right Transform::template process_tile<0, 0, 1, 2>, // Bottom-right }, { Transform::template process_tile<0, 0, 2, 0>, // Bottom Transform::template process_tile<0, 0, 2, 1>, // Bottom-right Transform::template process_tile<0, 0, 2, 2>, // Bottom-right } }, { { Transform::template process_tile<0, 1, 0, 0>, // Left Transform::template process_tile<0, 1, 0, 1>, // Left AND right Transform::template process_tile<0, 1, 0, 2>, // Left AND right }, { Transform::template process_tile<0, 1, 1, 0>, // Left-bottom Transform::template process_tile<0, 1, 1, 1>, // Left, bottom AND right Transform::template process_tile<0, 1, 1, 2>, // Left, bottom AND right }, { Transform::template process_tile<0, 1, 2, 0>, // Left-bottom Transform::template process_tile<0, 1, 2, 1>, // Left, bottom AND right Transform::template process_tile<0, 1, 2, 2>, // Left, bottom AND right } }, }, { { { Transform::template process_tile<1, 0, 0, 0>, // Top Transform::template process_tile<1, 0, 0, 1>, // Top-right Transform::template process_tile<1, 0, 0, 2>, // Top-right }, { Transform::template process_tile<1, 0, 1, 0>, // Top AND bottom Transform::template process_tile<1, 0, 1, 1>, // Top, bottom AND right Transform::template process_tile<1, 0, 1, 2>, // Top, bottom AND right }, { Transform::template process_tile<1, 0, 2, 0>, // Top AND bottom Transform::template process_tile<1, 0, 2, 1>, // Top, bottom AND right Transform::template process_tile<1, 0, 2, 2>, // Top, bottom AND right } }, { { Transform::template process_tile<1, 1, 0, 0>, // Top-left Transform::template process_tile<1, 1, 0, 1>, // Top, left AND right Transform::template process_tile<1, 1, 0, 2>, // Top, left AND right }, { Transform::template process_tile<1, 1, 1, 0>, // Top, left AND bottom Transform::template process_tile<1, 1, 1, 1>, // All padded Transform::template process_tile<1, 1, 1, 2>, // All padded }, { Transform::template process_tile<1, 1, 2, 0>, // Top, left AND bottom Transform::template process_tile<1, 1, 2, 1>, // All padded Transform::template process_tile<1, 1, 2, 2>, // All padded } } } }; template struct WinogradGEMM<2, 2, 3, 3>::InputTransform; } // namespace winograd