/* * Copyright (c) 2021 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/Helpers.h" #include "arm_compute/core/ITensorPack.h" #include "arm_compute/core/Window.h" #include "src/core/NEON/NEMath.h" #include "src/core/NEON/wrapper/wrapper.h" #include "src/core/common/Validate.h" #include "src/core/helpers/ScaleHelpers.h" #include "src/core/helpers/ScaleHelpers.h" #include "src/core/utils/ScaleUtils.h" #include "support/Rounding.h" #include #include #if defined(__ARM_FEATURE_SVE) #include namespace arm_compute { namespace { void qasymm8_signed_sve_scale_nearest(const ITensor *src, ITensor *dst, const ITensor *offsets, float sampling_offset, bool align_corners, const Window &window) { const size_t in_stride_c = src->info()->dimension(0) + src->info()->padding().left + src->info()->padding().right; const size_t in_stride_w = src->info()->dimension(1) + src->info()->padding().top + src->info()->padding().bottom; const size_t in_stride_wc = in_stride_w * in_stride_c; const size_t in_dim_h = src->info()->dimension(2); // Compute the ratio between source height and destination height const auto hr = scale_utils::calculate_resize_ratio(in_dim_h, dst->info()->dimension(2), align_corners); const auto window_start_x = static_cast(window.x().start()); const auto window_end_x = static_cast(window.x().end()); Window win(window); win.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator out(dst, win); const uint8_t *in_ptr_start = src->buffer() + src->info()->offset_first_element_in_bytes(); const unsigned int in_stride_bytes_hwc = src->info()->strides_in_bytes()[3]; execute_window_loop(win, [&](const Coordinates & id) { const int32_t offset = *reinterpret_cast(offsets->ptr_to_element(Coordinates(id.y(), id.z()))) * in_stride_c; const auto in_hi = static_cast(align_corners ? utils::rounding::round_half_away_from_zero((id.z() + sampling_offset) * hr) : std::floor((id.z() + sampling_offset) * hr)); const int offset_row = in_hi * in_stride_wc; const auto in_ptr = reinterpret_cast(in_ptr_start + in_stride_bytes_hwc * id[3]); const auto out_ptr = reinterpret_cast(out.ptr()); // Compute S elements per iteration int x = window_start_x; svbool_t pg = svwhilelt_b8(x, window_end_x); do { // Store results svst1_s8(pg, out_ptr + x, svld1_s8(pg, in_ptr + offset + offset_row + x)); x += svcntw(); pg = svwhilelt_b8(x, window_end_x); } while(svptest_any(svptrue_b8(), pg)); }, out); } void qasymm8_signed_sve_scale_bilinear(const ITensor *src, ITensor *dst, const ITensor *offsets, const ITensor *dx, const ITensor *dy, BorderMode border_mode, PixelValue constant_border_value, float sampling_offset, bool align_corners, const Window &window) { // Get data layout and width/height indices const DataLayout data_layout = src->info()->data_layout(); const int idx_width = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH); const int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT); // Compute the ratio between source height and destination height const auto hr = scale_utils::calculate_resize_ratio(src->info()->dimension(idx_height), dst->info()->dimension(idx_height), align_corners); Window win_off; win_off.set(Window::DimX, Window::Dimension(0, 0, 0)); win_off.set(Window::DimY, Window::Dimension(0, 0, 0)); // Don't increment in X and Y direction for the input tensor // A pointer to the start of this plane is needed as base for the precomputed offsets Window win_in(window); win_in.set(idx_width, Window::Dimension(0, 0, 0)); win_in.set(idx_height, Window::Dimension(0, 0, 0)); for(size_t d = Window::DimZ; d < offsets->info()->num_dimensions(); ++d) { win_off.set(d, Window::Dimension(0, 0, 0)); } Iterator in(src, win_in); Iterator out(dst, window); const int32_t in_dim_w = src->info()->dimension(idx_width); const int32_t in_dim_h = src->info()->dimension(idx_height); const int32_t stride_w = src->info()->strides_in_bytes()[idx_width]; const int32_t stride_h = src->info()->strides_in_bytes()[idx_height]; const UniformQuantizationInfo iq_info = src->info()->quantization_info().uniform(); const UniformQuantizationInfo oq_info = dst->info()->quantization_info().uniform(); if(border_mode == BorderMode::CONSTANT) { const int8_t const_border_value = static_cast(constant_border_value.get()); execute_window_loop(window, [&](const Coordinates & id) { const int32_t index_h = std::floor((id[idx_height] + sampling_offset) * hr - sampling_offset); const int32_t index_w = *(reinterpret_cast(offsets->ptr_to_element(Coordinates(id[idx_width], id[idx_height])))); const auto dx_val = *(reinterpret_cast(dx->ptr_to_element(Coordinates(id[idx_width], id[idx_height])))); const auto dy_val = *(reinterpret_cast(dy->ptr_to_element(Coordinates(id[idx_width], id[idx_height])))); const auto pixel_row_ptr = reinterpret_cast(in.ptr()); const auto a00 = (0 <= index_w && index_w < in_dim_w && 0 <= index_h && index_h < in_dim_h) ? (*(pixel_row_ptr + index_w * stride_w + index_h * stride_h)) : const_border_value; const auto a01 = (-1 <= index_w && index_w < in_dim_w - 1 && 0 <= index_h && index_h < in_dim_h) ? (*(pixel_row_ptr + (index_w + 1) * stride_w + index_h * stride_h)) : const_border_value; const auto a10 = (0 <= index_w && index_w < in_dim_w && -1 <= index_h && index_h < in_dim_h - 1) ? (*(pixel_row_ptr + index_w * stride_w + (index_h + 1) * stride_h)) : const_border_value; const auto a11 = (-1 <= index_w && index_w < in_dim_w - 1 && -1 <= index_h && index_h < in_dim_h - 1) ? (*(pixel_row_ptr + (index_w + 1) * stride_w + (index_h + 1) * stride_h)) : const_border_value; const float inp00 = Qasymm8QuantizationHelper::dequantize(a00, iq_info); const float inp01 = Qasymm8QuantizationHelper::dequantize(a01, iq_info); const float inp10 = Qasymm8QuantizationHelper::dequantize(a10, iq_info); const float inp11 = Qasymm8QuantizationHelper::dequantize(a11, iq_info); *reinterpret_cast(out.ptr()) = Qasymm8QuantizationHelper::quantize(scale_helpers::delta_bilinear(inp00, inp01, inp10, inp11, dx_val, dy_val), oq_info); }, in, out); } else if(border_mode == BorderMode::REPLICATE) { execute_window_loop(window, [&](const Coordinates & id) { const int index_h = std::floor((id[idx_height] + sampling_offset) * hr - sampling_offset); const int32_t index_w = *(reinterpret_cast(offsets->ptr_to_element(Coordinates(id[idx_width], id[idx_height])))); const auto dx_val = *(reinterpret_cast(dx->ptr_to_element(Coordinates(id[idx_width], id[idx_height])))); const auto dy_val = *(reinterpret_cast(dy->ptr_to_element(Coordinates(id[idx_width], id[idx_height])))); const auto pixel_row_ptr = reinterpret_cast(in.ptr()); auto clamped_w = utility::clamp(index_w, 0, in_dim_w - 1); auto clamped_w1 = utility::clamp(index_w + 1, 0, in_dim_w - 1); auto clamped_h = utility::clamp(index_h, 0, in_dim_h - 1); auto clamped_h1 = utility::clamp(index_h + 1, 0, in_dim_h - 1); const auto a00 = *(pixel_row_ptr + clamped_w * stride_w + clamped_h * stride_h); const auto a01 = *(pixel_row_ptr + clamped_w1 * stride_w + clamped_h * stride_h); const auto a10 = *(pixel_row_ptr + clamped_w * stride_w + clamped_h1 * stride_h); const auto a11 = *(pixel_row_ptr + clamped_w1 * stride_w + clamped_h1 * stride_h); const float inp00 = Qasymm8QuantizationHelper::dequantize(a00, iq_info); const float inp01 = Qasymm8QuantizationHelper::dequantize(a01, iq_info); const float inp10 = Qasymm8QuantizationHelper::dequantize(a10, iq_info); const float inp11 = Qasymm8QuantizationHelper::dequantize(a11, iq_info); *reinterpret_cast(out.ptr()) = Qasymm8QuantizationHelper::quantize(scale_helpers::delta_bilinear(inp00, inp01, inp10, inp11, dx_val, dy_val), oq_info); }, in, out); } else { ARM_COMPUTE_ERROR("Not implemented"); } } } namespace cpu { void qasymm8_signed_sve_scale(const ITensor *src, ITensor *dst, const ITensor *offsets, const ITensor *dx, const ITensor *dy, InterpolationPolicy policy, BorderMode border_mode, PixelValue constant_border_value, float sampling_offset, bool align_corners, const Window &window) { if(policy == InterpolationPolicy::BILINEAR) { qasymm8_signed_sve_scale_bilinear(src, dst, offsets, dx, dy, border_mode, constant_border_value, sampling_offset, align_corners, window); } else if(policy == InterpolationPolicy::NEAREST_NEIGHBOR) { qasymm8_signed_sve_scale_nearest(src, dst, offsets, sampling_offset, align_corners, window); } } } // namespace cpu } // namespace arm_compute #endif // __ARM_FEATURE_SVE