/* * Copyright (c) 2021 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/Helpers.h" #include "arm_compute/core/ITensorPack.h" #include "arm_compute/core/Window.h" #include "src/core/NEON/NEMath.h" #include "src/core/NEON/wrapper/wrapper.h" #include "src/core/common/Validate.h" #include "src/core/helpers/ScaleHelpers.h" #include "src/core/utils/ScaleUtils.h" #include "support/Rounding.h" #include #include #if defined(__ARM_FEATURE_SVE) #include namespace arm_compute { namespace { void fp16_sve_scale_nearest(const ITensor *src, ITensor *dst, const ITensor *offsets, float sampling_offset, bool align_corners, const Window &window) { const size_t in_stride_c = src->info()->dimension(0) + src->info()->padding().left + src->info()->padding().right; const size_t in_stride_w = src->info()->dimension(1) + src->info()->padding().top + src->info()->padding().bottom; const size_t in_stride_wc = in_stride_w * in_stride_c; const size_t in_dim_h = src->info()->dimension(2); // Compute the ratio between source height and destination height const auto hr = scale_utils::calculate_resize_ratio(in_dim_h, dst->info()->dimension(2), align_corners); const auto window_start_x = static_cast(window.x().start()); const auto window_end_x = static_cast(window.x().end()); Window win(window); win.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator out(dst, win); const uint8_t *in_ptr_start = src->buffer() + src->info()->offset_first_element_in_bytes(); const unsigned int in_stride_bytes_hwc = src->info()->strides_in_bytes()[3]; execute_window_loop(win, [&](const Coordinates & id) { const int32_t offset = *reinterpret_cast(offsets->ptr_to_element(Coordinates(id.y(), id.z()))) * in_stride_c; const auto in_hi = static_cast(align_corners ? utils::rounding::round_half_away_from_zero((id.z() + sampling_offset) * hr) : std::floor((id.z() + sampling_offset) * hr)); const int offset_row = in_hi * in_stride_wc; const auto in_ptr = reinterpret_cast(in_ptr_start + in_stride_bytes_hwc * id[3]); const auto out_ptr = reinterpret_cast(out.ptr()); // Compute S elements per iteration int x = window_start_x; svbool_t pg = svwhilelt_b16(x, window_end_x); do { // Store results svst1_f16(pg, out_ptr + x, svld1_f16(pg, in_ptr + offset + offset_row + x)); x += svcntw(); pg = svwhilelt_b16(x, window_end_x); } while(svptest_any(svptrue_b16(), pg)); }, out); } void fp16_sve_scale_bilinear(const ITensor *src, ITensor *dst, const ITensor *offsets, const ITensor *dx, const ITensor *dy, BorderMode border_mode, PixelValue constant_border_value, float sampling_offset, bool align_corners, const Window &window) { // Compute the ratio between source height and destination height const auto hr = scale_utils::calculate_resize_ratio(src->info()->dimension(2), dst->info()->dimension(2), align_corners); Iterator out(dst, window); const int in_stride_c = src->info()->dimension(0) + src->info()->padding().left + src->info()->padding().right; const int in_dim_w = src->info()->dimension(1); const int in_dim_h = src->info()->dimension(2); const int in_stride_wc = in_stride_c * (in_dim_w + src->info()->padding().top + src->info()->padding().bottom); // Don't increment in Y and Z direction for the input tensor // A pointer to the start of this plane is needed as base for the precomputed offsets Window win_in(window); win_in.set(Window::DimY, Window::Dimension(0, 0, 0)); win_in.set(Window::DimZ, Window::Dimension(0, 0, 0)); Iterator in(src, win_in); if(border_mode == BorderMode::CONSTANT) { using ConstType = typename std::conditional::value, half, float16_t>::type; const float16_t const_border_value = static_cast(constant_border_value.get()); execute_window_loop(window, [&](const Coordinates & id) { const auto offset = *reinterpret_cast(offsets->ptr_to_element(Coordinates(id.y(), id.z()))); const auto dx_val = *reinterpret_cast(dx->ptr_to_element(Coordinates(id.y(), id.z()))); const auto dy_val = *reinterpret_cast(dy->ptr_to_element(Coordinates(id.y(), id.z()))); const int32_t in_hi = std::floor((id.z() + sampling_offset) * hr - sampling_offset); const float16_t *in_ptr = reinterpret_cast(in.ptr()) + offset * in_stride_c + in_hi * in_stride_wc; const auto a00 = (0 <= offset && offset < in_dim_w && 0 <= in_hi && in_hi < in_dim_h) ? *in_ptr : const_border_value; const auto a01 = (-1 <= offset && offset < in_dim_w - 1 && 0 <= in_hi && in_hi < in_dim_h) ? *(in_ptr + in_stride_c) : const_border_value; const auto a10 = (0 <= offset && offset < in_dim_w && -1 <= in_hi && in_hi < in_dim_h - 1) ? *(in_ptr + in_stride_wc) : const_border_value; const auto a11 = (-1 <= offset && offset < in_dim_w - 1 && -1 <= in_hi && in_hi < in_dim_h - 1) ? *(in_ptr + in_stride_c + in_stride_wc) : const_border_value; *reinterpret_cast(out.ptr()) = static_cast(scale_helpers::delta_bilinear(a00, a01, a10, a11, dx_val, dy_val)); }, in, out); } else if(border_mode == BorderMode::REPLICATE) { execute_window_loop(window, [&](const Coordinates & id) { const auto offset = *reinterpret_cast(offsets->ptr_to_element(Coordinates(id.y(), id.z()))); const auto dx_val = *reinterpret_cast(dx->ptr_to_element(Coordinates(id.y(), id.z()))); const auto dy_val = *reinterpret_cast(dy->ptr_to_element(Coordinates(id.y(), id.z()))); const int in_hi = std::floor((id.z() + sampling_offset) * hr - sampling_offset); auto clamped_w = utility::clamp(offset, 0, in_dim_w - 1); auto clamped_w1 = utility::clamp(offset + 1, 0, in_dim_w - 1); auto clamped_h = utility::clamp(in_hi, 0, in_dim_h - 1); auto clamped_h1 = utility::clamp(in_hi + 1, 0, in_dim_h - 1); const auto a00 = *(reinterpret_cast(in.ptr()) + clamped_w * in_stride_c + clamped_h * in_stride_wc); const auto a01 = *(reinterpret_cast(in.ptr()) + clamped_w1 * in_stride_c + clamped_h * in_stride_wc); const auto a10 = *(reinterpret_cast(in.ptr()) + clamped_w * in_stride_c + clamped_h1 * in_stride_wc); const auto a11 = *(reinterpret_cast(in.ptr()) + clamped_w1 * in_stride_c + clamped_h1 * in_stride_wc); *reinterpret_cast(out.ptr()) = static_cast(scale_helpers::delta_bilinear(a00, a01, a10, a11, dx_val, dy_val)); }, in, out); } else { ARM_COMPUTE_ERROR("Not implemented"); } } } namespace cpu { void fp16_sve_scale(const ITensor *src, ITensor *dst, const ITensor *offsets, const ITensor *dx, const ITensor *dy, InterpolationPolicy policy, BorderMode border_mode, PixelValue constant_border_value, float sampling_offset, bool align_corners, const Window &window) { if(policy == InterpolationPolicy::BILINEAR) { fp16_sve_scale_bilinear(src, dst, offsets, dx, dy, border_mode, constant_border_value, sampling_offset, align_corners, window); } else if(policy == InterpolationPolicy::NEAREST_NEIGHBOR) { fp16_sve_scale_nearest(src, dst, offsets, sampling_offset, align_corners, window); } } } // namespace cpu } // namespace arm_compute #endif // __ARM_FEATURE_SVE