/* * Copyright (c) 2020 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC #include "arm.hpp" #include "kernel.hpp" namespace winograd { template <> void WeightTransform<3, 3, 6, 6, __fp16, __fp16, WinogradRoots::Integers>::execute( const int n_output_channels, const int n_input_channels, const __fp16* const input, // NOTE: Data in HWIO order __fp16* const output, const int matrix_stride, const int matrix_row_stride ) { // Get pointers to each cell of the weight tensor const auto weight_col_stride = n_input_channels * n_output_channels; const auto weight_row_stride = 3 * weight_col_stride; const __fp16 *inptrs[3][3]; for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) { inptrs[i][j] = input + i*weight_row_stride + j*weight_col_stride; } } // For each input channel for (int ic = 0; ic < n_input_channels; ic++) { __fp16 *outptr = output + ic * matrix_row_stride; // For each output channel int channels_remaining = n_output_channels; #ifdef __aarch64__ for (; channels_remaining >= 8; channels_remaining -= 8) { // Matrices used and computed in this kernel float16x8_t w[3][3], Ww[6][3], V[6][6]; // Read weights for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) { w[i][j] = vld1q_f16(inptrs[i][j]); inptrs[i][j] += 8; } } // Compute the matrix W w for (int j = 0; j < 3; j++) { // Ww[0][j] = 6*w[0][j]; Ww[0][j] = vmulq_n_f16(w[0][j], 6.0); // Ww[1][j] = -4*w[0][j] + -4*w[1][j] + -4*w[2][j]; Ww[1][j] = vmulq_n_f16(vaddq_f16(vaddq_f16(w[0][j], w[1][j]), w[2][j]), -4.0); // Ww[2][j] = -4*w[0][j] + 4*w[1][j] + -4*w[2][j]; Ww[2][j] = vmulq_n_f16(vsubq_f16(vsubq_f16(w[1][j], w[0][j]), w[2][j]), 4.0); // Ww[3][j] = 1*w[0][j] + 2*w[1][j] + 4*w[2][j]; Ww[3][j] = vaddq_f16(vaddq_f16(w[0][j], vmulq_f16(w[1][j], vdupq_n_f16(2.0f))), vmulq_f16(w[2][j], vdupq_n_f16(4.0f))); // Ww[4][j] = 1*w[0][j] + -2*w[1][j] + 4*w[2][j]; Ww[4][j] = vaddq_f16(vsubq_f16(w[0][j], vmulq_f16(w[1][j], vdupq_n_f16(2.0f))), vmulq_f16(w[2][j], vdupq_n_f16(4.0f))); // Ww[5][j] = 24*w[2][j]; Ww[5][j] = vmulq_n_f16(w[2][j], 24.0f); } // Compute V = W w WT for (int i = 0; i < 6; i++) { const float recip576 = 1.0f / 576.0f; // V[i][0] = 6*Ww[i][0]; V[i][0] = vmulq_n_f16(vmulq_n_f16(Ww[i][0], 6.0), recip576); // V[i][1] = -4*Ww[i][0] + -4*Ww[i][1] + -4*Ww[i][2]; V[i][1] = vmulq_n_f16(vmulq_n_f16(vaddq_f16(vaddq_f16(Ww[i][0], Ww[i][1]), Ww[i][2]), -4.0), recip576); // V[i][2] = -4*Ww[i][0] + 4*Ww[i][1] + -4*Ww[i][2]; V[i][2] = vmulq_n_f16(vmulq_n_f16(vsubq_f16(vsubq_f16(Ww[i][1], Ww[i][0]), Ww[i][2]), 4.0), recip576); // V[i][3] = 1*Ww[i][0] + 2*Ww[i][1] + 4*Ww[i][2]; V[i][3] = vmulq_n_f16(vaddq_f16(vaddq_f16(Ww[i][0], vmulq_f16(Ww[i][1], vdupq_n_f16(2.0f))), vmulq_f16(Ww[i][2], vdupq_n_f16(4.0f))), recip576); // V[i][4] = 1*Ww[i][0] + -2*Ww[i][1] + 4*Ww[i][2]; V[i][4] = vmulq_n_f16(vaddq_f16(vsubq_f16(Ww[i][0], vmulq_f16(Ww[i][1], vdupq_n_f16(2.0f))), vmulq_f16(Ww[i][2], vdupq_n_f16(4.0f))), recip576); // V[i][5] = 24*Ww[i][2]; V[i][5] = vmulq_n_f16(vmulq_n_f16(Ww[i][2], 24.0f), recip576); } // Store the transformed weights for (int i = 0, m = 0; i < 6; i++) { for (int j = 0; j < 6; j++, m++) { vst1q_f16(outptr + m*matrix_stride, V[i][j]); } } outptr += 8; } #endif // __aarch64__ #ifdef __arm_any__ for (; channels_remaining >= 4; channels_remaining -= 4) { // Matrices used and computed in this kernel float16x4_t w[3][3], Ww[6][3], V[6][6]; // Read weights for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) { w[i][j] = vld1_f16(inptrs[i][j]); inptrs[i][j] += 4; } } // Compute the matrix W w for (int j = 0; j < 3; j++) { // Ww[0][j] = 6*w[0][j]; Ww[0][j] = vmul_n_f16(w[0][j], 6.0); // Ww[1][j] = -4*w[0][j] + -4*w[1][j] + -4*w[2][j]; Ww[1][j] = vmul_n_f16(vadd_f16(vadd_f16(w[0][j], w[1][j]), w[2][j]), -4.0); // Ww[2][j] = -4*w[0][j] + 4*w[1][j] + -4*w[2][j]; Ww[2][j] = vmul_n_f16(vsub_f16(vsub_f16(w[1][j], w[0][j]), w[2][j]), 4.0); // Ww[3][j] = 1*w[0][j] + 2*w[1][j] + 4*w[2][j]; Ww[3][j] = vadd_f16(vadd_f16(w[0][j], vmul_f16(w[1][j], vdup_n_f16(2.0f))), vmul_f16(w[2][j], vdup_n_f16(4.0f))); // Ww[4][j] = 1*w[0][j] + -2*w[1][j] + 4*w[2][j]; Ww[4][j] = vadd_f16(vsub_f16(w[0][j], vmul_f16(w[1][j], vdup_n_f16(2.0f))), vmul_f16(w[2][j], vdup_n_f16(4.0f))); // Ww[5][j] = 24*w[2][j]; Ww[5][j] = vmul_n_f16(w[2][j], 24.0f); } // Compute V = W w WT for (int i = 0; i < 6; i++) { const float recip576 = 1.0f / 576.0f; // V[i][0] = 6*Ww[i][0]; V[i][0] = vmul_n_f16(vmul_n_f16(Ww[i][0], 6.0), recip576); // V[i][1] = -4*Ww[i][0] + -4*Ww[i][1] + -4*Ww[i][2]; V[i][1] = vmul_n_f16(vmul_n_f16(vadd_f16(vadd_f16(Ww[i][0], Ww[i][1]), Ww[i][2]), -4.0), recip576); // V[i][2] = -4*Ww[i][0] + 4*Ww[i][1] + -4*Ww[i][2]; V[i][2] = vmul_n_f16(vmul_n_f16(vsub_f16(vsub_f16(Ww[i][1], Ww[i][0]), Ww[i][2]), 4.0), recip576); // V[i][3] = 1*Ww[i][0] + 2*Ww[i][1] + 4*Ww[i][2]; V[i][3] = vmul_n_f16(vadd_f16(vadd_f16(Ww[i][0], vmul_f16(Ww[i][1], vdup_n_f16(2.0f))), vmul_f16(Ww[i][2], vdup_n_f16(4.0f))), recip576); // V[i][4] = 1*Ww[i][0] + -2*Ww[i][1] + 4*Ww[i][2]; V[i][4] = vmul_n_f16(vadd_f16(vsub_f16(Ww[i][0], vmul_f16(Ww[i][1], vdup_n_f16(2.0f))), vmul_f16(Ww[i][2], vdup_n_f16(4.0f))), recip576); // V[i][5] = 24*Ww[i][2]; V[i][5] = vmul_n_f16(vmul_n_f16(Ww[i][2], 24.0f), recip576); } // Store the transformed weights for (int i = 0, m = 0; i < 6; i++) { for (int j = 0; j < 6; j++, m++) { vst1_f16(outptr + m*matrix_stride, V[i][j]); } } outptr += 4; } #endif // __arm_any__ for (; channels_remaining; channels_remaining--) { // Matrices used and computed in this kernel __fp16 w[3][3], Ww[6][3], V[6][6]; // Read weights for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) { w[i][j] = *(inptrs[i][j]++); } } // Compute the matrix W w for (int j = 0; j < 3; j++) { Ww[0][j] = 6*w[0][j]; Ww[1][j] = -4*w[0][j] + -4*w[1][j] + -4*w[2][j]; Ww[2][j] = -4*w[0][j] + 4*w[1][j] + -4*w[2][j]; Ww[3][j] = 1*w[0][j] + 2*w[1][j] + 4*w[2][j]; Ww[4][j] = 1*w[0][j] + -2*w[1][j] + 4*w[2][j]; Ww[5][j] = 24*w[2][j]; } // Compute V = W w WT for (int i = 0; i < 6; i++) { V[i][0] = ( 6*Ww[i][0]) / 576.0; V[i][1] = (-4*Ww[i][0] + -4*Ww[i][1] + -4*Ww[i][2]) / 576.0; V[i][2] = (-4*Ww[i][0] + 4*Ww[i][1] + -4*Ww[i][2]) / 576.0; V[i][3] = ( 1*Ww[i][0] + 2*Ww[i][1] + 4*Ww[i][2]) / 576.0; V[i][4] = ( 1*Ww[i][0] + -2*Ww[i][1] + 4*Ww[i][2]) / 576.0; V[i][5] = (24*Ww[i][2]) / 576.0; } // Store the transformed weights for (int i = 0, m = 0; i < 6; i++) { for (int j = 0; j < 6; j++, m++) { *(outptr + m*matrix_stride) = V[i][j]; } } outptr++; } } } template class WeightTransform<3, 3, 6, 6, __fp16, __fp16, WinogradRoots::Integers>; } // namespace #endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC