/* * Copyright (c) 2019 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm.hpp" #include "kernel.hpp" namespace winograd { template <> void WeightTransform<5, 5, 6, 6, float, float, WinogradRoots::Integers>::execute( const int n_output_channels, const int n_input_channels, const float* const input, float* const output, const int matrix_stride, const int matrix_row_stride ) { // Get pointers to each cell of the weight tensor const auto weight_col_stride = n_input_channels * n_output_channels; const auto weight_row_stride = 5 * weight_col_stride; const float *inptrs[5][5]; for (int i = 0; i < 5; i++) { for (int j = 0; j < 5; j++) { inptrs[i][j] = input + i*weight_row_stride + j*weight_col_stride; } } // For each input channel for (int ic = 0; ic < n_input_channels; ic++) { float *outptr = output + ic * matrix_row_stride; // For each output channel int channels_remaining = n_output_channels; #ifdef __aarch64__ for (; channels_remaining >= 4; channels_remaining -= 4) { // Matrices used and computed in this kernel float32x4_t w[5][5], Ww[6][5], V[6][6]; // Read weights for (int i = 0; i < 5; i++) { for (int j = 0; j < 5; j++) { w[i][j] = vld1q_f32(inptrs[i][j]); inptrs[i][j] += 4; } } // Compute the matrix W w for (int j = 0; j < 5; j++) { // Ww[0][j] = w[0][j]/4.0f; Ww[0][j] = vmulq_n_f32(w[0][j], 1.0f/4.0f); // Ww[1][j] = -( w[0][j] + w[1][j] + w[2][j] + w[3][j] + w[4][j])/6.0f; Ww[1][j] = vmulq_n_f32( vaddq_f32( vaddq_f32( vaddq_f32(w[1][j], w[0][j]), vaddq_f32(w[3][j], w[2][j]) ), w[4][j] ), -1.0f/6.0f ); // Ww[2][j] = +(-w[0][j] + w[1][j] - w[2][j] + w[3][j] - w[4][j])/6.0f; // Ww[2][j] = ((w[1][j] - w[0][j]) + (w[3][j] - w[2][j]) - w[4][j])/6.0f; Ww[2][j] = vmulq_n_f32( vsubq_f32( vaddq_f32( vsubq_f32(w[1][j], w[0][j]), vsubq_f32(w[3][j], w[2][j]) ), w[4][j] ), 1.0f/6.0f ); // Ww[3][j] = (w[0][j]/8.0f + w[1][j]/4.0f + w[2][j]/2.0f + w[3][j] + 2*w[4][j])/3.0f; Ww[3][j] = vmulq_n_f32( vmlaq_n_f32( vaddq_f32( vaddq_f32(vmulq_n_f32(w[0][j], 1.0f/8.0f), vmulq_n_f32(w[1][j], 1.0f/4.0f)), vaddq_f32(vmulq_n_f32(w[2][j], 1.0f/2.0f), w[3][j]) ), w[4][j], 2.0f ), 1.0f/3.0f ); // Ww[4][j] = (w[0][j]/8.0f - w[1][j]/4.0f + w[2][j]/2.0f - w[3][j] + 2*w[4][j])/3.0f; Ww[4][j] = vmulq_n_f32( vmlaq_n_f32( vaddq_f32( vsubq_f32(vmulq_n_f32(w[0][j], 1.0f/8.0f), vmulq_n_f32(w[1][j], 1.0f/4.0f)), vsubq_f32(vmulq_n_f32(w[2][j], 1.0f/2.0f), w[3][j]) ), w[4][j], 2.0f ), 1.0f/3.0f ); // Ww[5][j] = w[4][j]; Ww[5][j] = w[4][j]; } // Compute V = W w WT for (int i = 0; i < 6; i++) { // V[i][0] = Ww[i][0]/4.0f; V[i][0] = vmulq_n_f32(Ww[i][0], 1.0f/4.0f); // V[i][1] = -( Ww[i][0] + Ww[i][1] + Ww[i][2] + Ww[i][3] + Ww[i][4])/6.0f; V[i][1] = vmulq_n_f32( vaddq_f32( vaddq_f32( vaddq_f32(Ww[i][1], Ww[i][0]), vaddq_f32(Ww[i][3], Ww[i][2]) ), Ww[i][4] ), -1.0f/6.0f ); // V[i][2] = +(-Ww[i][0] + Ww[i][1] - Ww[i][2] + Ww[i][3] - Ww[i][4])/6.0f; // V[i][2] = ((Ww[i][1] - Ww[i][0]) + (Ww[i][3] - Ww[i][2]) - Ww[i][4])/6.0f; V[i][2] = vmulq_n_f32( vsubq_f32( vaddq_f32( vsubq_f32(Ww[i][1], Ww[i][0]), vsubq_f32(Ww[i][3], Ww[i][2]) ), Ww[i][4] ), 1.0f/6.0f ); // V[i][3] = (Ww[i][0]/8.0f + Ww[i][1]/4.0f + Ww[i][2]/2.0f + Ww[i][3] + 2*Ww[i][4])/3.0f; V[i][3] = vmulq_n_f32( vmlaq_n_f32( vaddq_f32( vaddq_f32(vmulq_n_f32(Ww[i][0], 1.0f/8.0f), vmulq_n_f32(Ww[i][1], 1.0f/4.0f)), vaddq_f32(vmulq_n_f32(Ww[i][2], 1.0f/2.0f), Ww[i][3]) ), Ww[i][4], 2.0f ), 1.0f/3.0f ); // V[i][4] = (Ww[i][0]/8.0f - Ww[i][1]/4.0f + Ww[i][2]/2.0f - Ww[i][3] + 2*Ww[i][4])/3.0f; V[i][4] = vmulq_n_f32( vmlaq_n_f32( vaddq_f32( vsubq_f32(vmulq_n_f32(Ww[i][0], 1.0f/8.0f), vmulq_n_f32(Ww[i][1], 1.0f/4.0f)), vsubq_f32(vmulq_n_f32(Ww[i][2], 1.0f/2.0f), Ww[i][3]) ), Ww[i][4], 2.0f ), 1.0f/3.0f ); // V[i][5] = Ww[i][4]; V[i][5] = Ww[i][4]; } // Store the transformed weights for (int i = 0, m = 0; i < 6; i++) { for (int j = 0; j < 6; j++, m++) { vst1q_f32(outptr + m*matrix_stride, V[i][j]); } } outptr += 4; } #endif // __aarch64__ #ifdef __arm_any__ for (; channels_remaining >= 2; channels_remaining -= 2) { // Matrices used and computed in this kernel float32x2_t w[5][5], Ww[6][5], V[6][6]; // Read weights for (int i = 0; i < 5; i++) { for (int j = 0; j < 5; j++) { w[i][j] = vld1_f32(inptrs[i][j]); inptrs[i][j] += 2; } } // Compute the matrix W w for (int j = 0; j < 5; j++) { // Ww[0][j] = w[0][j]/4.0f; Ww[0][j] = vmul_n_f32(w[0][j], 1.0f/4.0f); // Ww[1][j] = -( w[0][j] + w[1][j] + w[2][j] + w[3][j] + w[4][j])/6.0f; Ww[1][j] = vmul_n_f32( vadd_f32( vadd_f32( vadd_f32(w[1][j], w[0][j]), vadd_f32(w[3][j], w[2][j]) ), w[4][j] ), -1.0f/6.0f ); // Ww[2][j] = +(-w[0][j] + w[1][j] - w[2][j] + w[3][j] - w[4][j])/6.0f; // Ww[2][j] = ((w[1][j] - w[0][j]) + (w[3][j] - w[2][j]) - w[4][j])/6.0f; Ww[2][j] = vmul_n_f32( vsub_f32( vadd_f32( vsub_f32(w[1][j], w[0][j]), vsub_f32(w[3][j], w[2][j]) ), w[4][j] ), 1.0f/6.0f ); // Ww[3][j] = (w[0][j]/8.0f + w[1][j]/4.0f + w[2][j]/2.0f + w[3][j] + 2*w[4][j])/3.0f; Ww[3][j] = vmul_n_f32( vmla_n_f32( vadd_f32( vadd_f32(vmul_n_f32(w[0][j], 1.0f/8.0f), vmul_n_f32(w[1][j], 1.0f/4.0f)), vadd_f32(vmul_n_f32(w[2][j], 1.0f/2.0f), w[3][j]) ), w[4][j], 2.0f ), 1.0f/3.0f ); // Ww[4][j] = (w[0][j]/8.0f - w[1][j]/4.0f + w[2][j]/2.0f - w[3][j] + 2*w[4][j])/3.0f; Ww[4][j] = vmul_n_f32( vmla_n_f32( vadd_f32( vsub_f32(vmul_n_f32(w[0][j], 1.0f/8.0f), vmul_n_f32(w[1][j], 1.0f/4.0f)), vsub_f32(vmul_n_f32(w[2][j], 1.0f/2.0f), w[3][j]) ), w[4][j], 2.0f ), 1.0f/3.0f ); // Ww[5][j] = w[4][j]; Ww[5][j] = w[4][j]; } // Compute V = W w WT for (int i = 0; i < 6; i++) { // V[i][0] = Ww[i][0]/4.0f; V[i][0] = vmul_n_f32(Ww[i][0], 1.0f/4.0f); // V[i][1] = -( Ww[i][0] + Ww[i][1] + Ww[i][2] + Ww[i][3] + Ww[i][4])/6.0f; V[i][1] = vmul_n_f32( vadd_f32( vadd_f32( vadd_f32(Ww[i][1], Ww[i][0]), vadd_f32(Ww[i][3], Ww[i][2]) ), Ww[i][4] ), -1.0f/6.0f ); // V[i][2] = +(-Ww[i][0] + Ww[i][1] - Ww[i][2] + Ww[i][3] - Ww[i][4])/6.0f; // V[i][2] = ((Ww[i][1] - Ww[i][0]) + (Ww[i][3] - Ww[i][2]) - Ww[i][4])/6.0f; V[i][2] = vmul_n_f32( vsub_f32( vadd_f32( vsub_f32(Ww[i][1], Ww[i][0]), vsub_f32(Ww[i][3], Ww[i][2]) ), Ww[i][4] ), 1.0f/6.0f ); // V[i][3] = (Ww[i][0]/8.0f + Ww[i][1]/4.0f + Ww[i][2]/2.0f + Ww[i][3] + 2*Ww[i][4])/3.0f; V[i][3] = vmul_n_f32( vmla_n_f32( vadd_f32( vadd_f32(vmul_n_f32(Ww[i][0], 1.0f/8.0f), vmul_n_f32(Ww[i][1], 1.0f/4.0f)), vadd_f32(vmul_n_f32(Ww[i][2], 1.0f/2.0f), Ww[i][3]) ), Ww[i][4], 2.0f ), 1.0f/3.0f ); // V[i][4] = (Ww[i][0]/8.0f - Ww[i][1]/4.0f + Ww[i][2]/2.0f - Ww[i][3] + 2*Ww[i][4])/3.0f; V[i][4] = vmul_n_f32( vmla_n_f32( vadd_f32( vsub_f32(vmul_n_f32(Ww[i][0], 1.0f/8.0f), vmul_n_f32(Ww[i][1], 1.0f/4.0f)), vsub_f32(vmul_n_f32(Ww[i][2], 1.0f/2.0f), Ww[i][3]) ), Ww[i][4], 2.0f ), 1.0f/3.0f ); // V[i][5] = Ww[i][4]; V[i][5] = Ww[i][4]; } // Store the transformed weights for (int i = 0, m = 0; i < 6; i++) { for (int j = 0; j < 6; j++, m++) { vst1_f32(outptr + m*matrix_stride, V[i][j]); } } outptr += 2; } #endif // __arm_any__ for (; channels_remaining; channels_remaining--) { // Matrices used and computed in this kernel float w[5][5], Ww[6][5], V[6][6]; // Read weights for (int i = 0; i < 5; i++) { for (int j = 0; j < 5; j++) { w[i][j] = *(inptrs[i][j]++); } } // Compute the matrix W w for (int j = 0; j < 5; j++) { Ww[0][j] = w[0][j]/4.0f; Ww[1][j] = -( w[0][j] + w[1][j] + w[2][j] + w[3][j] + w[4][j])/6.0f; Ww[2][j] = +(-w[0][j] + w[1][j] - w[2][j] + w[3][j] - w[4][j])/6.0f; Ww[3][j] = (w[0][j]/8.0f + w[1][j]/4.0f + w[2][j]/2.0f + w[3][j] + 2*w[4][j])/3.0f; Ww[4][j] = (w[0][j]/8.0f - w[1][j]/4.0f + w[2][j]/2.0f - w[3][j] + 2*w[4][j])/3.0f; Ww[5][j] = w[4][j]; } // Compute V = W w WT for (int i = 0; i < 6; i++) { V[i][0] = Ww[i][0]/4.0f; V[i][1] = -( Ww[i][0] + Ww[i][1] + Ww[i][2] + Ww[i][3] + Ww[i][4])/6.0f; V[i][2] = +(-Ww[i][0] + Ww[i][1] - Ww[i][2] + Ww[i][3] - Ww[i][4])/6.0f; V[i][3] = (Ww[i][0]/8.0f + Ww[i][1]/4.0f + Ww[i][2]/2.0f + Ww[i][3] + 2*Ww[i][4])/3.0f; V[i][4] = (Ww[i][0]/8.0f - Ww[i][1]/4.0f + Ww[i][2]/2.0f - Ww[i][3] + 2*Ww[i][4])/3.0f; V[i][5] = Ww[i][4]; } // Store the transformed weights for (int i = 0, m = 0; i < 6; i++) { for (int j = 0; j < 6; j++, m++) { *(outptr + m*matrix_stride) = V[i][j]; } } outptr++; } } } template class WeightTransform<5, 5, 6, 6, float, float, WinogradRoots::Integers>; } // namespace winograd