/* * Copyright (c) 2017-2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "output.hpp" #include "arm.hpp" namespace winograd { template <> void OutputTransform<1, 3, 1, 8, float, float, WinogradRoots::Integers>::transform_tile( const int n_channels, const float* inptr, const int matrix_stride, const float* bptr, float* const output, const int, // No need to stride across rows const int output_col_stride, const float output_min, const float output_max ) { // Construct a map to the output cells float *outptrs[output_tile_cols]; for (int j = 0; j < output_tile_cols; j++) { outptrs[j] = output + j*output_col_stride; } // For each channel of the output int channels_remaining = n_channels; #ifdef __arm_any__ for (; channels_remaining >= 4; channels_remaining -= 4) { // Matrices used and computed during this transform float32x4_t F[inner_tile_cols], f[output_tile_cols], b = vdupq_n_f32(0.0f); // Read a 1x8 tile in the Winograd domain for (int j = 0; j < inner_tile_cols; j++) { F[j] = vld1q_f32(inptr + j*matrix_stride); } inptr += 4; f[0] = vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmulq_n_f32(F[6], 1), F[5], 1), F[4], 1), F[3], 1), F[2], 1), F[1], 1), F[0], 1); f[1] = vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmulq_n_f32(F[2], 1), F[6], 3), F[4], 2), F[3], -2), F[5], -3), F[1], -1); f[2] = vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmulq_n_f32(F[2], 1), F[1], 1), F[6], 9), F[5], 9), F[4], 4), F[3], 4); f[3] = vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmulq_n_f32(F[2], 1), F[6], 27), F[4], 8), F[3], -8), F[5], -27), F[1], -1); f[4] = vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmulq_n_f32(F[2], 1), F[1], 1), F[6], 81), F[5], 81), F[4], 16), F[3], 16); f[5] = vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmulq_n_f32(F[7], 1), F[2], 1), F[6], 243), F[4], 32), F[3], -32), F[5], -243), F[1], -1); // Write out the output tile if (bptr != 0) { b = vld1q_f32(bptr); bptr += 4; } for (int j = 0; j < output_tile_cols; j++) { const auto y = vminq_f32(vmaxq_f32(f[j] + b, vdupq_n_f32(output_min)), vdupq_n_f32(output_max)); vst1q_f32(outptrs[j], y); outptrs[j] += 4; } } for (; channels_remaining >= 2; channels_remaining -= 2) { // Matrices used and computed during this transform float32x2_t F[inner_tile_cols], f[output_tile_cols], b = vdup_n_f32(0.0f); // Read a 1x8 tile in the Winograd domain for (int j = 0; j < inner_tile_cols; j++) { F[j] = vld1_f32(inptr + j*matrix_stride); } inptr += 2; f[0] = vmla_n_f32(vmla_n_f32(vmla_n_f32(vmla_n_f32(vmla_n_f32(vmla_n_f32(vmul_n_f32(F[6], 1), F[5], 1), F[4], 1), F[3], 1), F[2], 1), F[1], 1), F[0], 1); f[1] = vmla_n_f32(vmla_n_f32(vmla_n_f32(vmla_n_f32(vmla_n_f32(vmul_n_f32(F[2], 1), F[6], 3), F[4], 2), F[3], -2), F[5], -3), F[1], -1); f[2] = vmla_n_f32(vmla_n_f32(vmla_n_f32(vmla_n_f32(vmla_n_f32(vmul_n_f32(F[2], 1), F[1], 1), F[6], 9), F[5], 9), F[4], 4), F[3], 4); f[3] = vmla_n_f32(vmla_n_f32(vmla_n_f32(vmla_n_f32(vmla_n_f32(vmul_n_f32(F[2], 1), F[6], 27), F[4], 8), F[3], -8), F[5], -27), F[1], -1); f[4] = vmla_n_f32(vmla_n_f32(vmla_n_f32(vmla_n_f32(vmla_n_f32(vmul_n_f32(F[2], 1), F[1], 1), F[6], 81), F[5], 81), F[4], 16), F[3], 16); f[5] = vmla_n_f32(vmla_n_f32(vmla_n_f32(vmla_n_f32(vmla_n_f32(vmla_n_f32(vmul_n_f32(F[7], 1), F[2], 1), F[6], 243), F[4], 32), F[3], -32), F[5], -243), F[1], -1); // Write out the output tile if (bptr != 0) { b = vld1_f32(bptr); bptr += 2; } for (int j = 0; j < output_tile_cols; j++) { const auto y = vmin_f32(vmax_f32(f[j] + b, vdup_n_f32(output_min)), vdup_n_f32(output_max)); vst1_f32(outptrs[j], y); outptrs[j] += 2; } } #endif // __arm_any__ for (; channels_remaining; channels_remaining--) { // Matrices used and computed during this transform float F[inner_tile_cols], f[output_tile_cols], b = 0.0f; // Read a 1x8 tile in the Winograd domain for (int j = 0; j < inner_tile_cols; j++) { F[j] = *(inptr + j*matrix_stride); } inptr++; f[0] = F[0]*1 + F[1]*1 + F[2]*1 + F[3]*1 + F[4]*1 + F[5]*1 + F[6]*1; f[1] = F[1]*-1 + F[5]*-3 + F[3]*-2 + F[4]*2 + F[6]*3 + F[2]*1; f[2] = F[3]*4 + F[4]*4 + F[5]*9 + F[6]*9 + F[1]*1 + F[2]*1; f[3] = F[1]*-1 + F[5]*-27 + F[3]*-8 + F[4]*8 + F[6]*27 + F[2]*1; f[4] = F[3]*16 + F[4]*16 + F[5]*81 + F[6]*81 + F[1]*1 + F[2]*1; f[5] = F[1]*-1 + F[5]*-243 + F[3]*-32 + F[4]*32 + F[6]*243 + F[2]*1 + F[7]*1; // Write out the output tile if (bptr != 0) { b = *(bptr++); } for (int j = 0; j < output_tile_cols; j++) { *(outptrs[j]++) = std::max(std::min(f[j] + b, output_max), output_min); } } } template class OutputTransform<1, 3, 1, 8, float, float, WinogradRoots::Integers>; template class OutputTransform<3, 1, 8, 1, float, float, WinogradRoots::Integers>; } // namespace