/* * Copyright (c) 2017-2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm.hpp" #include "output.hpp" namespace winograd { template <> void OutputTransform<3, 3, 4, 4, float, float, WinogradRoots::Integers>::transform_tile( const int n_channels, const float* inptr, const int matrix_stride, const float* bptr, float* const output, const int output_row_stride, const int output_col_stride, const float output_min, const float output_max ) { // Construct a map to the output cells float *outptrs[output_tile_rows][output_tile_cols]; for (int i = 0; i < output_tile_rows; i++) { for (int j = 0; j < output_tile_cols; j++) { outptrs[i][j] = output + i*output_row_stride + j*output_col_stride; } } // For each channel of the output int channels_remaining = n_channels; #ifdef __aarch64__ for (; channels_remaining >= 4; channels_remaining -= 4) { // Matrices used and computed during this transform float32x4_t F[4][4], FZ[4][2], f[2][2], b; // Read a 4x4 tile in the Winograd domain for (int i = 0, m = 0; i < 4; i++) { for (int j = 0; j < 4; j++, m++) { F[i][j] = vld1q_f32(inptr + m*matrix_stride); } } inptr += 4; // Compute the matrix F Z for (int i = 0; i < 4; i++) { // FZ[i][0] = F[i][0] + F[i][1] + F[i][2]; FZ[i][0] = vaddq_f32(vaddq_f32(F[i][0], F[i][1]), F[i][2]); // FZ[i][1] = F[i][1] - F[i][2] - F[i][3]; FZ[i][1] = vsubq_f32(vsubq_f32(F[i][1], F[i][2]), F[i][3]); } // Compute the output tile f = ZT F Z for (int j = 0; j < 2; j++) { // f[0][j] = FZ[0][j] + FZ[1][j] + FZ[2][j]; f[0][j] = vaddq_f32(vaddq_f32(FZ[0][j], FZ[1][j]), FZ[2][j]); // f[1][j] = FZ[1][j] - FZ[2][j] - FZ[3][j]; f[1][j] = vsubq_f32(vsubq_f32(FZ[1][j], FZ[2][j]), FZ[3][j]); } // Load the bias vector if (bptr != nullptr) { b = vld1q_f32(bptr); bptr += 4; } else { b = vdupq_n_f32(0.0f); } // Write out the output tile for (int i = 0; i < output_tile_rows; i++) { for (int j = 0; j < output_tile_cols; j++) { const auto y = vmaxq_f32(vminq_f32(vaddq_f32(f[i][j], b), vdupq_n_f32(output_max)), vdupq_n_f32(output_min)); vst1q_f32(outptrs[i][j], y); outptrs[i][j] += 4; } } } #endif // __aarch64__ #ifdef __arm_any__ for (; channels_remaining >= 2; channels_remaining -= 2) { // Matrices used and computed during this transform float32x2_t F[4][4], FZ[4][2], f[2][2], b; // Read a 4x4 tile in the Winograd domain for (int i = 0, m = 0; i < 4; i++) { for (int j = 0; j < 4; j++, m++) { F[i][j] = vld1_f32(inptr + m*matrix_stride); } } inptr += 2; // Compute the matrix F Z for (int i = 0; i < 4; i++) { // FZ[i][0] = F[i][0] + F[i][1] + F[i][2]; FZ[i][0] = vadd_f32(vadd_f32(F[i][0], F[i][1]), F[i][2]); // FZ[i][1] = F[i][1] - F[i][2] - F[i][3]; FZ[i][1] = vsub_f32(vsub_f32(F[i][1], F[i][2]), F[i][3]); } // Compute the output tile f = ZT F Z for (int j = 0; j < 2; j++) { // f[0][j] = FZ[0][j] + FZ[1][j] + FZ[2][j]; f[0][j] = vadd_f32(vadd_f32(FZ[0][j], FZ[1][j]), FZ[2][j]); // f[1][j] = FZ[1][j] - FZ[2][j] - FZ[3][j]; f[1][j] = vsub_f32(vsub_f32(FZ[1][j], FZ[2][j]), FZ[3][j]); } // Load the bias vector if (bptr != nullptr) { b = vld1_f32(bptr); bptr += 2; } else { b = vdup_n_f32(0.0f); } // Write out the output tile for (int i = 0; i < output_tile_rows; i++) { for (int j = 0; j < output_tile_cols; j++) { const auto y = vmax_f32(vmin_f32(vadd_f32(f[i][j], b), vdup_n_f32(output_max)), vdup_n_f32(output_min)); vst1_f32(outptrs[i][j], y); outptrs[i][j] += 2; } } } #endif // __arm_any__ for (; channels_remaining; channels_remaining--) { // Matrices used and computed during this transform float F[4][4], FZ[4][2], f[2][2], b; // Read a 4x4 tile in the Winograd domain for (int i = 0, m = 0; i < 4; i++) { for (int j = 0; j < 4; j++, m++) { F[i][j] = *(inptr + m*matrix_stride); } } inptr++; // Compute the matrix F Z for (int i = 0; i < 4; i++) { FZ[i][0] = F[i][0] + F[i][1] + F[i][2]; FZ[i][1] = F[i][1] - F[i][2] - F[i][3]; } // Compute the output tile f = ZT F Z for (int j = 0; j < 2; j++) { f[0][j] = FZ[0][j] + FZ[1][j] + FZ[2][j]; f[1][j] = FZ[1][j] - FZ[2][j] - FZ[3][j]; } // Load the bias if (bptr != nullptr) { b = *(bptr++); } else { b = 0.0f; } // Write out the output tile for (int i = 0; i < output_tile_rows; i++) { for (int j = 0; j < output_tile_cols; j++) { const auto y = std::max(std::min(f[i][j] + b, output_max), output_min); *(outptrs[i][j]++) = y; } } } } template class OutputTransform<3, 3, 4, 4, float, float, WinogradRoots::Integers>; } // namespace