/* * Copyright (c) 2020 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC #include "arm.hpp" #include "input.hpp" namespace winograd { template <> void InputTransform<6, 6, __fp16, __fp16, WinogradRoots::Integers>::transform_tile( const int n_channels, const __fp16* const input_base, const int input_row_stride, const int input_col_stride, __fp16* outptr, const int matrix_stride ) { constexpr int inner_tile_rows = 6; constexpr int inner_tile_cols = 6; // Get pointers into the input tile const __fp16 *x_ptrs[inner_tile_rows][inner_tile_cols]; for (int i = 0, xi = 0; i < inner_tile_rows; i++, xi++) { // Get a pointer into the row const __fp16* const row_ptr = input_base + xi*input_row_stride; for (int j = 0, xj = 0; j < inner_tile_cols; j++, xj++) { x_ptrs[i][j] = row_ptr + xj*input_col_stride; } } // Matrices used/computed in this kernel. __fp16 x[inner_tile_rows][inner_tile_cols]; __fp16 XTx[inner_tile_rows][inner_tile_cols]; __fp16 U[inner_tile_rows][inner_tile_cols]; for (int i = 0; i < inner_tile_rows; i++) { for (int j = 0; j < inner_tile_cols; j++) { x[i][j] = XTx[i][j] = 0.0f; } } // Perform the Winograd input transformation for each channel in the input // tensor. int channels_remaining = n_channels; for (; channels_remaining >= 8; channels_remaining -= 8) { // Matrices used/computed in this kernel float16x8_t x[inner_tile_rows][inner_tile_cols]; float16x8_t XTx[inner_tile_rows][inner_tile_cols]; float16x8_t U[inner_tile_rows][inner_tile_cols]; for (int i = 0; i < inner_tile_rows; i++) { for (int j = 0; j < inner_tile_cols; j++) { x[i][j] = vdupq_n_f16(0.0f); XTx[i][j] = vdupq_n_f16(0.0f); } } // Read a 6x6 tile in the Winograd domain for (int i = 0; i < inner_tile_rows; i++) { for (int j = 0; j < inner_tile_cols; j++) { x[i][j] = vld1q_f16(x_ptrs[i][j]); x_ptrs[i][j] += 8; } } // Compute XT . x for (int j = 0; j < inner_tile_cols; j++) { // XTx[0][j] = 4*x[0][j] + -5*x[2][j] + 1*x[4][j]; XTx[0][j] = vsubq_f16(vaddq_f16(x[4][j], vmulq_f16(x[0][j], vdupq_n_f16(4.0f))), vmulq_f16(x[2][j], vdupq_n_f16(5.0f))); // XTx[1][j] = -4*x[1][j] + -4*x[2][j] + 1*x[3][j] + 1*x[4][j]; XTx[1][j] = vsubq_f16(vaddq_f16(x[3][j], x[4][j]), vmulq_f16(vaddq_f16(x[1][j], x[2][j]), vdupq_n_f16(4.0f))); // XTx[2][j] = 4*x[1][j] + -4*x[2][j] + -1*x[3][j] + 1*x[4][j]; XTx[2][j] = vaddq_f16(vsubq_f16(x[4][j], x[3][j]), vmulq_f16(vsubq_f16(x[1][j], x[2][j]), vdupq_n_f16(4.0f))); // XTx[3][j] = -2*x[1][j] + -1*x[2][j] + 2*x[3][j] + 1*x[4][j]; XTx[3][j] = vaddq_f16(vsubq_f16(x[4][j], x[2][j]), vmulq_f16(vsubq_f16(x[3][j], x[1][j]), vdupq_n_f16(2.0f))); // XTx[4][j] = 2*x[1][j] + -1*x[2][j] + -2*x[3][j] + 1*x[4][j]; XTx[4][j] = vaddq_f16(vsubq_f16(x[4][j], x[2][j]), vmulq_f16(vsubq_f16(x[1][j], x[3][j]), vdupq_n_f16(2.0f))); // XTx[5][j] = 4*x[1][j] + -5*x[3][j] + 1*x[5][j]; XTx[5][j] = vsubq_f16(vaddq_f16(x[5][j], vmulq_f16(x[1][j], vdupq_n_f16(4.0f))), vmulq_f16(x[3][j], vdupq_n_f16(5.0f))); } // Compute U = XT . x . X for (int i = 0; i < inner_tile_rows; i++) { // U[i][0] = 4*XTx[i][0] + -5*XTx[i][2] + 1*XTx[i][4]; U[i][0] = vsubq_f16(vaddq_f16(XTx[i][4], vmulq_f16(XTx[i][0], vdupq_n_f16(4.0f))), vmulq_f16(XTx[i][2], vdupq_n_f16(5.0f))); // U[i][1] = -4*XTx[i][1] + -4*XTx[i][2] + 1*XTx[i][3] + 1*XTx[i][4]; U[i][1] = vsubq_f16(vaddq_f16(XTx[i][3], XTx[i][4]), vmulq_f16(vaddq_f16(XTx[i][1], XTx[i][2]), vdupq_n_f16(4.0f))); // U[i][2] = 4*XTx[i][1] + -4*XTx[i][2] + -1*XTx[i][3] + 1*XTx[i][4]; U[i][2] = vaddq_f16(vsubq_f16(XTx[i][4], XTx[i][3]), vmulq_f16(vsubq_f16(XTx[i][1], XTx[i][2]), vdupq_n_f16(4.0f))); // U[i][3] = -2*XTx[i][1] + -1*XTx[i][2] + 2*XTx[i][3] + 1*XTx[i][4]; U[i][3] = vaddq_f16(vsubq_f16(XTx[i][4], XTx[i][2]), vmulq_f16(vsubq_f16(XTx[i][3], XTx[i][1]), vdupq_n_f16(2.0f))); // U[i][4] = 2*XTx[i][1] + -1*XTx[i][2] + -2*XTx[i][3] + 1*XTx[i][4]; U[i][4] = vaddq_f16(vsubq_f16(XTx[i][4], XTx[i][2]), vmulq_f16(vsubq_f16(XTx[i][1], XTx[i][3]), vdupq_n_f16(2.0f))); // U[i][5] = 4*XTx[i][1] + -5*XTx[i][3] + 1*XTx[i][5]; U[i][5] = vsubq_f16(vaddq_f16(XTx[i][5], vmulq_f16(XTx[i][1], vdupq_n_f16(4.0f))), vmulq_f16(XTx[i][3], vdupq_n_f16(5.0f))); } // Store the transformed matrix for (int i = 0, m = 0; i < inner_tile_rows; i++) { for (int j = 0; j < inner_tile_cols; j++, m++) { vst1q_f16(outptr + m*matrix_stride, U[i][j]); } } outptr += 8; } for (; channels_remaining >= 4; channels_remaining -= 4) { // Matrices used/computed in this kernel float16x4_t x[inner_tile_rows][inner_tile_cols]; float16x4_t XTx[inner_tile_rows][inner_tile_cols]; float16x4_t U[inner_tile_rows][inner_tile_cols]; for (int i = 0; i < inner_tile_rows; i++) { for (int j = 0; j < inner_tile_cols; j++) { x[i][j] = vdup_n_f16(0.0f); XTx[i][j] = vdup_n_f16(0.0f); } } // Read a 6x6 tile in the Winograd domain for (int i = 0; i < inner_tile_rows; i++) { for (int j = 0; j < inner_tile_cols; j++) { x[i][j] = vld1_f16(x_ptrs[i][j]); x_ptrs[i][j] += 4; } } // Compute XT . x for (int j = 0; j < inner_tile_cols; j++) { // XTx[0][j] = 4*x[0][j] + -5*x[2][j] + 1*x[4][j]; XTx[0][j] = vsub_f16(vadd_f16(x[4][j], vmul_f16(x[0][j], vdup_n_f16(4.0f))), vmul_f16(x[2][j], vdup_n_f16(5.0f))); // XTx[1][j] = -4*x[1][j] + -4*x[2][j] + 1*x[3][j] + 1*x[4][j]; XTx[1][j] = vsub_f16(vadd_f16(x[3][j], x[4][j]), vmul_f16(vadd_f16(x[1][j], x[2][j]), vdup_n_f16(4.0f))); // XTx[2][j] = 4*x[1][j] + -4*x[2][j] + -1*x[3][j] + 1*x[4][j]; XTx[2][j] = vadd_f16(vsub_f16(x[4][j], x[3][j]), vmul_f16(vsub_f16(x[1][j], x[2][j]), vdup_n_f16(4.0f))); // XTx[3][j] = -2*x[1][j] + -1*x[2][j] + 2*x[3][j] + 1*x[4][j]; XTx[3][j] = vadd_f16(vsub_f16(x[4][j], x[2][j]), vmul_f16(vsub_f16(x[3][j], x[1][j]), vdup_n_f16(2.0f))); // XTx[4][j] = 2*x[1][j] + -1*x[2][j] + -2*x[3][j] + 1*x[4][j]; XTx[4][j] = vadd_f16(vsub_f16(x[4][j], x[2][j]), vmul_f16(vsub_f16(x[1][j], x[3][j]), vdup_n_f16(2.0f))); // XTx[5][j] = 4*x[1][j] + -5*x[3][j] + 1*x[5][j]; XTx[5][j] = vsub_f16(vadd_f16(x[5][j], vmul_f16(x[1][j], vdup_n_f16(4.0f))), vmul_f16(x[3][j], vdup_n_f16(5.0f))); } // Compute U = XT . x . X for (int i = 0; i < inner_tile_rows; i++) { // U[i][0] = 4*XTx[i][0] + -5*XTx[i][2] + 1*XTx[i][4]; U[i][0] = vsub_f16(vadd_f16(XTx[i][4], vmul_f16(XTx[i][0], vdup_n_f16(4.0f))), vmul_f16(XTx[i][2], vdup_n_f16(5.0f))); // U[i][1] = -4*XTx[i][1] + -4*XTx[i][2] + 1*XTx[i][3] + 1*XTx[i][4]; U[i][1] = vsub_f16(vadd_f16(XTx[i][3], XTx[i][4]), vmul_f16(vadd_f16(XTx[i][1], XTx[i][2]), vdup_n_f16(4.0f))); // U[i][2] = 4*XTx[i][1] + -4*XTx[i][2] + -1*XTx[i][3] + 1*XTx[i][4]; U[i][2] = vadd_f16(vsub_f16(XTx[i][4], XTx[i][3]), vmul_f16(vsub_f16(XTx[i][1], XTx[i][2]), vdup_n_f16(4.0f))); // U[i][3] = -2*XTx[i][1] + -1*XTx[i][2] + 2*XTx[i][3] + 1*XTx[i][4]; U[i][3] = vadd_f16(vsub_f16(XTx[i][4], XTx[i][2]), vmul_f16(vsub_f16(XTx[i][3], XTx[i][1]), vdup_n_f16(2.0f))); // U[i][4] = 2*XTx[i][1] + -1*XTx[i][2] + -2*XTx[i][3] + 1*XTx[i][4]; U[i][4] = vadd_f16(vsub_f16(XTx[i][4], XTx[i][2]), vmul_f16(vsub_f16(XTx[i][1], XTx[i][3]), vdup_n_f16(2.0f))); // U[i][5] = 4*XTx[i][1] + -5*XTx[i][3] + 1*XTx[i][5]; U[i][5] = vsub_f16(vadd_f16(XTx[i][5], vmul_f16(XTx[i][1], vdup_n_f16(4.0f))), vmul_f16(XTx[i][3], vdup_n_f16(5.0f))); } // Store the transformed matrix for (int i = 0, m = 0; i < inner_tile_rows; i++) { for (int j = 0; j < inner_tile_cols; j++, m++) { vst1_f16(outptr + m*matrix_stride, U[i][j]); } } outptr += 4; } for (; channels_remaining; channels_remaining--) { // Load x for (int i = 0; i < inner_tile_rows; i++) { for (int j = 0; j < inner_tile_cols; j++) { x[i][j] = *(x_ptrs[i][j]++); } } // Compute XT . x for (int j = 0; j < inner_tile_cols; j++) { XTx[0][j] = 4*x[0][j] + -5*x[2][j] + 1*x[4][j]; XTx[1][j] = -4*x[1][j] + -4*x[2][j] + 1*x[3][j] + 1*x[4][j]; XTx[2][j] = 4*x[1][j] + -4*x[2][j] + -1*x[3][j] + 1*x[4][j]; XTx[3][j] = -2*x[1][j] + -1*x[2][j] + 2*x[3][j] + 1*x[4][j]; XTx[4][j] = 2*x[1][j] + -1*x[2][j] + -2*x[3][j] + 1*x[4][j]; XTx[5][j] = 4*x[1][j] + -5*x[3][j] + 1*x[5][j]; } // Compute U = XT . x . X for (int i = 0; i < inner_tile_rows; i++) { U[i][0] = 4*XTx[i][0] + -5*XTx[i][2] + 1*XTx[i][4]; U[i][1] = -4*XTx[i][1] + -4*XTx[i][2] + 1*XTx[i][3] + 1*XTx[i][4]; U[i][2] = 4*XTx[i][1] + -4*XTx[i][2] + -1*XTx[i][3] + 1*XTx[i][4]; U[i][3] = -2*XTx[i][1] + -1*XTx[i][2] + 2*XTx[i][3] + 1*XTx[i][4]; U[i][4] = 2*XTx[i][1] + -1*XTx[i][2] + -2*XTx[i][3] + 1*XTx[i][4]; U[i][5] = 4*XTx[i][1] + -5*XTx[i][3] + 1*XTx[i][5]; } // Store the transformed matrix for (int i = 0, m = 0; i < inner_tile_rows; i++) { for (int j = 0; j < inner_tile_cols; j++, m++) { *(outptr + m*matrix_stride) = U[i][j]; } } outptr++; } } template class InputTransform<6, 6, __fp16, __fp16, WinogradRoots::Integers>; } // namespace winograd #endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC