/* * Copyright (c) 2022 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include namespace arm_conv { namespace winograd { namespace weight_transform { void arm_fp32_4x4_3x3( unsigned int n_channels, const float *inptr, const size_t ld_weight_row, const size_t ld_weight_col, float *outptr, const size_t matrix_stride ) { #ifdef __aarch64__ for (; n_channels >= 4; n_channels -= 4) { // Matrices used and computed in this kernel float32x4_t w[3][3], Ww[6][3], V[6][6]; // Read weights for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) { w[i][j] = vld1q_f32(inptr + i*ld_weight_row + j*ld_weight_col); } } // Compute the matrix W w for (int j = 0; j < 3; j++) { // Ww[0][j] = 6*w[0][j]; Ww[0][j] = vmulq_n_f32(w[0][j], 6.0); // Ww[1][j] = -4*w[0][j] + -4*w[1][j] + -4*w[2][j]; Ww[1][j] = vmulq_n_f32(vaddq_f32(vaddq_f32(w[0][j], w[1][j]), w[2][j]), -4.0); // Ww[2][j] = -4*w[0][j] + 4*w[1][j] + -4*w[2][j]; Ww[2][j] = vmulq_n_f32(vsubq_f32(vsubq_f32(w[1][j], w[0][j]), w[2][j]), 4.0); // Ww[3][j] = 1*w[0][j] + 2*w[1][j] + 4*w[2][j]; Ww[3][j] = vmlaq_n_f32(vmlaq_n_f32(w[0][j], w[1][j], 2.0f), w[2][j], 4.0f); // Ww[4][j] = 1*w[0][j] + -2*w[1][j] + 4*w[2][j]; Ww[4][j] = vmlaq_n_f32(vmlsq_n_f32(w[0][j], w[1][j], 2.0f), w[2][j], 4.0f); // Ww[5][j] = 24*w[2][j]; Ww[5][j] = vmulq_n_f32(w[2][j], 24.0f); } // Compute V = W w WT for (int i = 0; i < 6; i++) { const float recip576 = 1.0f / 576.0f; // V[i][0] = 6*Ww[i][0]; V[i][0] = vmulq_n_f32(vmulq_n_f32(Ww[i][0], 6.0), recip576); // V[i][1] = -4*Ww[i][0] + -4*Ww[i][1] + -4*Ww[i][2]; V[i][1] = vmulq_n_f32(vmulq_n_f32(vaddq_f32(vaddq_f32(Ww[i][0], Ww[i][1]), Ww[i][2]), -4.0), recip576); // V[i][2] = -4*Ww[i][0] + 4*Ww[i][1] + -4*Ww[i][2]; V[i][2] = vmulq_n_f32(vmulq_n_f32(vsubq_f32(vsubq_f32(Ww[i][1], Ww[i][0]), Ww[i][2]), 4.0), recip576); // V[i][3] = 1*Ww[i][0] + 2*Ww[i][1] + 4*Ww[i][2]; V[i][3] = vmulq_n_f32(vmlaq_n_f32(vmlaq_n_f32(Ww[i][0], Ww[i][1], 2.0f), Ww[i][2], 4.0f), recip576); // V[i][4] = 1*Ww[i][0] + -2*Ww[i][1] + 4*Ww[i][2]; V[i][4] = vmulq_n_f32(vmlaq_n_f32(vmlsq_n_f32(Ww[i][0], Ww[i][1], 2.0f), Ww[i][2], 4.0f), recip576); // V[i][5] = 24*Ww[i][2]; V[i][5] = vmulq_n_f32(vmulq_n_f32(Ww[i][2], 24.0f), recip576); } // Store the transformed weights for (int i = 0, m = 0; i < 6; i++) { for (int j = 0; j < 6; j++, m++) { vst1q_f32(outptr + m*matrix_stride, V[i][j]); } } inptr += 4; outptr += 4; } #endif // __aarch64__ for (; n_channels >= 2; n_channels -= 2) { // Matrices used and computed in this kernel float32x2_t w[3][3], Ww[6][3], V[6][6]; // Read weights for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) { w[i][j] = vld1_f32(inptr + i*ld_weight_row + j*ld_weight_col); } } // Compute the matrix W w for (int j = 0; j < 3; j++) { // Ww[0][j] = 6*w[0][j]; Ww[0][j] = vmul_n_f32(w[0][j], 6.0); // Ww[1][j] = -4*w[0][j] + -4*w[1][j] + -4*w[2][j]; Ww[1][j] = vmul_n_f32(vadd_f32(vadd_f32(w[0][j], w[1][j]), w[2][j]), -4.0); // Ww[2][j] = -4*w[0][j] + 4*w[1][j] + -4*w[2][j]; Ww[2][j] = vmul_n_f32(vsub_f32(vsub_f32(w[1][j], w[0][j]), w[2][j]), 4.0); // Ww[3][j] = 1*w[0][j] + 2*w[1][j] + 4*w[2][j]; Ww[3][j] = vmla_n_f32(vmla_n_f32(w[0][j], w[1][j], 2.0f), w[2][j], 4.0f); // Ww[4][j] = 1*w[0][j] + -2*w[1][j] + 4*w[2][j]; Ww[4][j] = vmla_n_f32(vmls_n_f32(w[0][j], w[1][j], 2.0f), w[2][j], 4.0f); // Ww[5][j] = 24*w[2][j]; Ww[5][j] = vmul_n_f32(w[2][j], 24.0f); } // Compute V = W w WT for (int i = 0; i < 6; i++) { const float recip576 = 1.0f / 576.0f; // V[i][0] = 6*Ww[i][0]; V[i][0] = vmul_n_f32(vmul_n_f32(Ww[i][0], 6.0), recip576); // V[i][1] = -4*Ww[i][0] + -4*Ww[i][1] + -4*Ww[i][2]; V[i][1] = vmul_n_f32(vmul_n_f32(vadd_f32(vadd_f32(Ww[i][0], Ww[i][1]), Ww[i][2]), -4.0), recip576); // V[i][2] = -4*Ww[i][0] + 4*Ww[i][1] + -4*Ww[i][2]; V[i][2] = vmul_n_f32(vmul_n_f32(vsub_f32(vsub_f32(Ww[i][1], Ww[i][0]), Ww[i][2]), 4.0), recip576); // V[i][3] = 1*Ww[i][0] + 2*Ww[i][1] + 4*Ww[i][2]; V[i][3] = vmul_n_f32(vmla_n_f32(vmla_n_f32(Ww[i][0], Ww[i][1], 2.0f), Ww[i][2], 4.0f), recip576); // V[i][4] = 1*Ww[i][0] + -2*Ww[i][1] + 4*Ww[i][2]; V[i][4] = vmul_n_f32(vmla_n_f32(vmls_n_f32(Ww[i][0], Ww[i][1], 2.0f), Ww[i][2], 4.0f), recip576); // V[i][5] = 24*Ww[i][2]; V[i][5] = vmul_n_f32(vmul_n_f32(Ww[i][2], 24.0f), recip576); } // Store the transformed weights for (int i = 0, m = 0; i < 6; i++) { for (int j = 0; j < 6; j++, m++) { vst1_f32(outptr + m*matrix_stride, V[i][j]); } } inptr += 2; outptr += 2; } for (; n_channels; n_channels--) { // Matrices used and computed in this kernel float w[3][3], Ww[6][3], V[6][6]; // Read weights for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) { w[i][j] = *(inptr + i*ld_weight_row + j*ld_weight_col); } } // Compute the matrix W w for (int j = 0; j < 3; j++) { Ww[0][j] = 6*w[0][j]; Ww[1][j] = -4*w[0][j] + -4*w[1][j] + -4*w[2][j]; Ww[2][j] = -4*w[0][j] + 4*w[1][j] + -4*w[2][j]; Ww[3][j] = 1*w[0][j] + 2*w[1][j] + 4*w[2][j]; Ww[4][j] = 1*w[0][j] + -2*w[1][j] + 4*w[2][j]; Ww[5][j] = 24*w[2][j]; } // Compute V = W w WT for (int i = 0; i < 6; i++) { V[i][0] = ( 6*Ww[i][0]) / 576.0; V[i][1] = (-4*Ww[i][0] + -4*Ww[i][1] + -4*Ww[i][2]) / 576.0; V[i][2] = (-4*Ww[i][0] + 4*Ww[i][1] + -4*Ww[i][2]) / 576.0; V[i][3] = ( 1*Ww[i][0] + 2*Ww[i][1] + 4*Ww[i][2]) / 576.0; V[i][4] = ( 1*Ww[i][0] + -2*Ww[i][1] + 4*Ww[i][2]) / 576.0; V[i][5] = (24*Ww[i][2]) / 576.0; } // Store the transformed weights for (int i = 0, m = 0; i < 6; i++) { for (int j = 0; j < 6; j++, m++) { *(outptr + m*matrix_stride) = V[i][j]; } } inptr++; outptr++; } } } // namespace weight_transform } // namespace winograd } // namespace arm_conv