/* * Copyright (c) 2017 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/NEON/kernels/convolution/winograd/transforms/input.hpp" #include "arm_compute/core/NEON/kernels/convolution/winograd/winograd_gemm.hpp" #include "arm_compute/core/NEON/kernels/convolution/common/arm.hpp" namespace { template void winograd_input_transform_6x6_fp32_process_tile( int n_channels, const float* const input_base, const int input_row_stride, const int input_col_stride, float* const matrix_base, const int matrix_stride, const int _pad_top, const int _pad_left, const int _pad_bottom, const int _pad_right ) { const int pad_top = Specialized ? PadTop : _pad_top; const int pad_left = Specialized ? PadLeft : _pad_left; const int pad_bottom = Specialized ? PadBottom : _pad_bottom; const int pad_right = Specialized ? PadRight : _pad_right; constexpr int inner_tile_rows = 6; constexpr int inner_tile_cols = 6; const int cells_i = inner_tile_rows - pad_bottom; const int cells_j = inner_tile_cols - pad_right; float *outptr = matrix_base; // Get pointers into the input tile const float *x_ptrs[inner_tile_rows][inner_tile_cols]; for (int i = pad_top, xi = 0; i < cells_i; i++, xi++) { // Get a pointer into the row const float* const row_ptr = input_base + xi*input_row_stride; for (int j = pad_left, xj = 0; j < cells_j; j++, xj++) { x_ptrs[i][j] = row_ptr + xj*input_col_stride; } } // Matrices used/computed in this kernel. float x[inner_tile_rows][inner_tile_cols]; float XTx[inner_tile_rows][inner_tile_cols]; float U[inner_tile_rows][inner_tile_cols]; for (int i = 0; i < inner_tile_rows; i++) { for (int j = 0; j < inner_tile_cols; j++) { x[i][j] = XTx[i][j] = 0.0f; } } // Perform the Winograd input transformation for each channel in the input // tensor. int channels_remaining = n_channels; #ifdef __aarch64__ for (; channels_remaining >= 4; channels_remaining -= 4) { // Matrices used/computed in this kernel float32x4_t x[inner_tile_rows][inner_tile_cols]; float32x4_t XTx[inner_tile_rows][inner_tile_cols]; float32x4_t U[inner_tile_rows][inner_tile_cols]; for (int i = 0; i < inner_tile_rows; i++) { for (int j = 0; j < inner_tile_cols; j++) { x[i][j] = vdupq_n_f32(0.0f); XTx[i][j] = vdupq_n_f32(0.0f); } } // Read a 6x6 tile in the Winograd domain for (int i = pad_top; i < cells_i; i++) { for (int j = pad_left; j < cells_j; j++) { x[i][j] = vld1q_f32(x_ptrs[i][j]); x_ptrs[i][j] += 4; } } // Compute XT . x for (int j = pad_left; j < cells_j; j++) { // XTx[0][j] = 4*x[0][j] + -5*x[2][j] + 1*x[4][j]; XTx[0][j] = vmlsq_n_f32(vmlaq_n_f32(x[4][j], x[0][j], 4.0f), x[2][j], 5.0f); // XTx[1][j] = -4*x[1][j] + -4*x[2][j] + 1*x[3][j] + 1*x[4][j]; XTx[1][j] = vmlsq_n_f32(vaddq_f32(x[3][j], x[4][j]), vaddq_f32(x[1][j], x[2][j]), 4.0f); // XTx[2][j] = 4*x[1][j] + -4*x[2][j] + -1*x[3][j] + 1*x[4][j]; XTx[2][j] = vmlaq_n_f32(vsubq_f32(x[4][j], x[3][j]), vsubq_f32(x[1][j], x[2][j]), 4.0f); // XTx[3][j] = -2*x[1][j] + -1*x[2][j] + 2*x[3][j] + 1*x[4][j]; XTx[3][j] = vmlaq_n_f32(vsubq_f32(x[4][j], x[2][j]), vsubq_f32(x[3][j], x[1][j]), 2.0f); // XTx[4][j] = 2*x[1][j] + -1*x[2][j] + -2*x[3][j] + 1*x[4][j]; XTx[4][j] = vmlaq_n_f32(vsubq_f32(x[4][j], x[2][j]), vsubq_f32(x[1][j], x[3][j]), 2.0f); // XTx[5][j] = 4*x[1][j] + -5*x[3][j] + 1*x[5][j]; XTx[5][j] = vmlsq_n_f32(vmlaq_n_f32(x[5][j], x[1][j], 4.0f), x[3][j], 5.0f); } // Compute U = XT . x . X for (int i = 0; i < inner_tile_rows; i++) { // U[i][0] = 4*XTx[i][0] + -5*XTx[i][2] + 1*XTx[i][4]; U[i][0] = vmlsq_n_f32(vmlaq_n_f32(XTx[i][4], XTx[i][0], 4.0f), XTx[i][2], 5.0f); // U[i][1] = -4*XTx[i][1] + -4*XTx[i][2] + 1*XTx[i][3] + 1*XTx[i][4]; U[i][1] = vmlsq_n_f32(vaddq_f32(XTx[i][3], XTx[i][4]), vaddq_f32(XTx[i][1], XTx[i][2]), 4.0f); // U[i][2] = 4*XTx[i][1] + -4*XTx[i][2] + -1*XTx[i][3] + 1*XTx[i][4]; U[i][2] = vmlaq_n_f32(vsubq_f32(XTx[i][4], XTx[i][3]), vsubq_f32(XTx[i][1], XTx[i][2]), 4.0f); // U[i][3] = -2*XTx[i][1] + -1*XTx[i][2] + 2*XTx[i][3] + 1*XTx[i][4]; U[i][3] = vmlaq_n_f32(vsubq_f32(XTx[i][4], XTx[i][2]), vsubq_f32(XTx[i][3], XTx[i][1]), 2.0f); // U[i][4] = 2*XTx[i][1] + -1*XTx[i][2] + -2*XTx[i][3] + 1*XTx[i][4]; U[i][4] = vmlaq_n_f32(vsubq_f32(XTx[i][4], XTx[i][2]), vsubq_f32(XTx[i][1], XTx[i][3]), 2.0f); // U[i][5] = 4*XTx[i][1] + -5*XTx[i][3] + 1*XTx[i][5]; U[i][5] = vmlsq_n_f32(vmlaq_n_f32(XTx[i][5], XTx[i][1], 4.0f), XTx[i][3], 5.0f); } // Store the transformed matrix for (int i = 0, m = 0; i < inner_tile_rows; i++) { for (int j = 0; j < inner_tile_cols; j++, m++) { vst1q_f32(outptr + m*matrix_stride, U[i][j]); } } outptr += 4; } #endif // __aarch64__ #ifdef __arm_any__ for (; channels_remaining >= 2; channels_remaining -= 2) { // Matrices used/computed in this kernel float32x2_t x[inner_tile_rows][inner_tile_cols]; float32x2_t XTx[inner_tile_rows][inner_tile_cols]; float32x2_t U[inner_tile_rows][inner_tile_cols]; for (int i = 0; i < inner_tile_rows; i++) { for (int j = 0; j < inner_tile_cols; j++) { x[i][j] = vdup_n_f32(0.0f); XTx[i][j] = vdup_n_f32(0.0f); } } // Read a 6x6 tile in the Winograd domain for (int i = pad_top; i < cells_i; i++) { for (int j = pad_left; j < cells_j; j++) { x[i][j] = vld1_f32(x_ptrs[i][j]); x_ptrs[i][j] += 2; } } // Compute XT . x for (int j = pad_left; j < cells_j; j++) { // XTx[0][j] = 4*x[0][j] + -5*x[2][j] + 1*x[4][j]; XTx[0][j] = vmls_n_f32(vmla_n_f32(x[4][j], x[0][j], 4.0f), x[2][j], 5.0f); // XTx[1][j] = -4*x[1][j] + -4*x[2][j] + 1*x[3][j] + 1*x[4][j]; XTx[1][j] = vmls_n_f32(vadd_f32(x[3][j], x[4][j]), vadd_f32(x[1][j], x[2][j]), 4.0f); // XTx[2][j] = 4*x[1][j] + -4*x[2][j] + -1*x[3][j] + 1*x[4][j]; XTx[2][j] = vmla_n_f32(vsub_f32(x[4][j], x[3][j]), vsub_f32(x[1][j], x[2][j]), 4.0f); // XTx[3][j] = -2*x[1][j] + -1*x[2][j] + 2*x[3][j] + 1*x[4][j]; XTx[3][j] = vmla_n_f32(vsub_f32(x[4][j], x[2][j]), vsub_f32(x[3][j], x[1][j]), 2.0f); // XTx[4][j] = 2*x[1][j] + -1*x[2][j] + -2*x[3][j] + 1*x[4][j]; XTx[4][j] = vmla_n_f32(vsub_f32(x[4][j], x[2][j]), vsub_f32(x[1][j], x[3][j]), 2.0f); // XTx[5][j] = 4*x[1][j] + -5*x[3][j] + 1*x[5][j]; XTx[5][j] = vmls_n_f32(vmla_n_f32(x[5][j], x[1][j], 4.0f), x[3][j], 5.0f); } // Compute U = XT . x . X for (int i = 0; i < inner_tile_rows; i++) { // U[i][0] = 4*XTx[i][0] + -5*XTx[i][2] + 1*XTx[i][4]; U[i][0] = vmls_n_f32(vmla_n_f32(XTx[i][4], XTx[i][0], 4.0f), XTx[i][2], 5.0f); // U[i][1] = -4*XTx[i][1] + -4*XTx[i][2] + 1*XTx[i][3] + 1*XTx[i][4]; U[i][1] = vmls_n_f32(vadd_f32(XTx[i][3], XTx[i][4]), vadd_f32(XTx[i][1], XTx[i][2]), 4.0f); // U[i][2] = 4*XTx[i][1] + -4*XTx[i][2] + -1*XTx[i][3] + 1*XTx[i][4]; U[i][2] = vmla_n_f32(vsub_f32(XTx[i][4], XTx[i][3]), vsub_f32(XTx[i][1], XTx[i][2]), 4.0f); // U[i][3] = -2*XTx[i][1] + -1*XTx[i][2] + 2*XTx[i][3] + 1*XTx[i][4]; U[i][3] = vmla_n_f32(vsub_f32(XTx[i][4], XTx[i][2]), vsub_f32(XTx[i][3], XTx[i][1]), 2.0f); // U[i][4] = 2*XTx[i][1] + -1*XTx[i][2] + -2*XTx[i][3] + 1*XTx[i][4]; U[i][4] = vmla_n_f32(vsub_f32(XTx[i][4], XTx[i][2]), vsub_f32(XTx[i][1], XTx[i][3]), 2.0f); // U[i][5] = 4*XTx[i][1] + -5*XTx[i][3] + 1*XTx[i][5]; U[i][5] = vmls_n_f32(vmla_n_f32(XTx[i][5], XTx[i][1], 4.0f), XTx[i][3], 5.0f); } // Store the transformed matrix for (int i = 0, m = 0; i < inner_tile_rows; i++) { for (int j = 0; j < inner_tile_cols; j++, m++) { vst1_f32(outptr + m*matrix_stride, U[i][j]); } } outptr += 2; } #endif // __arm_any__ for (; channels_remaining; channels_remaining--) { // Load x for (int i = pad_top; i < cells_i; i++) { for (int j = pad_left; j < cells_j; j++) { x[i][j] = *(x_ptrs[i][j]++); } } // Compute XT . x for (int j = pad_left; j < cells_j; j++) { XTx[0][j] = 4*x[0][j] + -5*x[2][j] + 1*x[4][j]; XTx[1][j] = -4*x[1][j] + -4*x[2][j] + 1*x[3][j] + 1*x[4][j]; XTx[2][j] = 4*x[1][j] + -4*x[2][j] + -1*x[3][j] + 1*x[4][j]; XTx[3][j] = -2*x[1][j] + -1*x[2][j] + 2*x[3][j] + 1*x[4][j]; XTx[4][j] = 2*x[1][j] + -1*x[2][j] + -2*x[3][j] + 1*x[4][j]; XTx[5][j] = 4*x[1][j] + -5*x[3][j] + 1*x[5][j]; } // Compute U = XT . x . X for (int i = 0; i < inner_tile_rows; i++) { U[i][0] = 4*XTx[i][0] + -5*XTx[i][2] + 1*XTx[i][4]; U[i][1] = -4*XTx[i][1] + -4*XTx[i][2] + 1*XTx[i][3] + 1*XTx[i][4]; U[i][2] = 4*XTx[i][1] + -4*XTx[i][2] + -1*XTx[i][3] + 1*XTx[i][4]; U[i][3] = -2*XTx[i][1] + -1*XTx[i][2] + 2*XTx[i][3] + 1*XTx[i][4]; U[i][4] = 2*XTx[i][1] + -1*XTx[i][2] + -2*XTx[i][3] + 1*XTx[i][4]; U[i][5] = 4*XTx[i][1] + -5*XTx[i][3] + 1*XTx[i][5]; } // Store the transformed matrix for (int i = 0, m = 0; i < inner_tile_rows; i++) { for (int j = 0; j < inner_tile_cols; j++, m++) { *(outptr + m*matrix_stride) = U[i][j]; } } outptr++; } } } namespace winograd { template using Tiles = InputTransformImplTiles; template <> const Tiles<3>::TileFn Tiles<3>::tilefn_generic = winograd_input_transform_6x6_fp32_process_tile; template <> const Tiles<3>::TileFn Tiles<3>::tilefn_unpadded = winograd_input_transform_6x6_fp32_process_tile; template <> const Tiles<3>::TileFn Tiles<3>::tilefn_top_padded[n_pad_top] = { winograd_input_transform_6x6_fp32_process_tile, }; template <> const Tiles<3>::TileFn Tiles<3>::tilefn_left_padded[n_pad_left] = { winograd_input_transform_6x6_fp32_process_tile, }; template <> const Tiles<3>::TileFn Tiles<3>::tilefn_bottom_padded[n_pad_bottom] = { winograd_input_transform_6x6_fp32_process_tile, winograd_input_transform_6x6_fp32_process_tile, winograd_input_transform_6x6_fp32_process_tile, winograd_input_transform_6x6_fp32_process_tile, winograd_input_transform_6x6_fp32_process_tile, winograd_input_transform_6x6_fp32_process_tile, }; template <> const Tiles<3>::TileFn Tiles<3>::tilefn_right_padded[n_pad_right] = { winograd_input_transform_6x6_fp32_process_tile, winograd_input_transform_6x6_fp32_process_tile, winograd_input_transform_6x6_fp32_process_tile, winograd_input_transform_6x6_fp32_process_tile, winograd_input_transform_6x6_fp32_process_tile, winograd_input_transform_6x6_fp32_process_tile, }; template <> const Tiles<5>::TileFn Tiles<5>::tilefn_generic = winograd_input_transform_6x6_fp32_process_tile; template <> const Tiles<5>::TileFn Tiles<5>::tilefn_unpadded = winograd_input_transform_6x6_fp32_process_tile; template <> const Tiles<5>::TileFn Tiles<5>::tilefn_top_padded[n_pad_top] = { winograd_input_transform_6x6_fp32_process_tile, }; template <> const Tiles<5>::TileFn Tiles<5>::tilefn_left_padded[n_pad_left] = { winograd_input_transform_6x6_fp32_process_tile, }; template <> const Tiles<5>::TileFn Tiles<5>::tilefn_bottom_padded[n_pad_bottom] = { winograd_input_transform_6x6_fp32_process_tile, winograd_input_transform_6x6_fp32_process_tile, winograd_input_transform_6x6_fp32_process_tile, winograd_input_transform_6x6_fp32_process_tile, winograd_input_transform_6x6_fp32_process_tile, winograd_input_transform_6x6_fp32_process_tile, }; template <> const Tiles<5>::TileFn Tiles<5>::tilefn_right_padded[n_pad_right] = { winograd_input_transform_6x6_fp32_process_tile, winograd_input_transform_6x6_fp32_process_tile, winograd_input_transform_6x6_fp32_process_tile, winograd_input_transform_6x6_fp32_process_tile, winograd_input_transform_6x6_fp32_process_tile, winograd_input_transform_6x6_fp32_process_tile, }; template class InputTransform<3, 3, 6, 6, float>; template class InputTransform<5, 5, 6, 6, float>; }