/* * Copyright (c) 2017 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/NEON/kernels/convolution/winograd/transforms/input.hpp" #include "arm_compute/core/NEON/kernels/convolution/winograd/winograd_gemm.hpp" #include "arm_compute/core/NEON/kernels/convolution/common/arm.hpp" namespace winograd { using Tiles = InputTransformImplTiles<3, 3, 4, 4, float>; namespace { template void winograd_input_transform_4x4_fp32_process_tile( int n_channels, const float* const input_base, const int input_row_stride, const int input_col_stride, float* const matrix_base, const int matrix_stride, const int _pad_top, const int _pad_left, const int _pad_bottom, const int _pad_right ) { const int pad_top = Specialized ? PadTop : _pad_top; const int pad_left = Specialized ? PadLeft : _pad_left; const int pad_bottom = Specialized ? PadBottom : _pad_bottom; const int pad_right = Specialized ? PadRight : _pad_right; constexpr int inner_tile_i = 4, inner_tile_j = 4; const int cells_i = inner_tile_i - pad_bottom; const int cells_j = inner_tile_i - pad_right; float *outptr = matrix_base; // Get pointers into the input tile const float *x_ptrs[inner_tile_i][inner_tile_j]; for (int i = pad_top, xi = 0; i < cells_i; i++, xi++) { // Get a pointer into the row const float* const row_ptr = input_base + xi*input_row_stride; for (int j = pad_left, xj = 0; j < cells_j; j++, xj++) { x_ptrs[i][j] = row_ptr + xj*input_col_stride; } } // Matrices used/computed in this kernel. float x[inner_tile_i][inner_tile_j]; float XTx[inner_tile_i][inner_tile_j]; float U[inner_tile_i][inner_tile_j]; for (int i = 0; i < inner_tile_i; i++) { for (int j = 0; j < inner_tile_j; j++) { x[i][j] = XTx[i][j] = 0.0f; } } // Perform the Winograd input transformation for each channel in the input // tensor. int channels_remaining = n_channels; #ifdef __aarch64__ for (; channels_remaining >= 4; channels_remaining -= 4) { // Matrices used/computed in this kernel. float32x4_t x[inner_tile_i][inner_tile_j]; float32x4_t XTx[inner_tile_i][inner_tile_j]; float32x4_t U[inner_tile_i][inner_tile_j]; for (int i = 0; i < inner_tile_i; i++) { for (int j = 0; j < inner_tile_j; j++) { x[i][j] = vdupq_n_f32(0.0f); XTx[i][j] = vdupq_n_f32(0.0f); } } // Load x for (int i = pad_top; i < cells_i; i++) { for (int j = pad_left; j < cells_j; j++) { x[i][j] = vld1q_f32(x_ptrs[i][j]); x_ptrs[i][j] += 4; } } // Compute XT . x for (int j = pad_left; j < cells_j; j++) { // XTx[0][j] = x[0][j] - x[2][j]; XTx[0][j] = vsubq_f32(x[0][j], x[2][j]); // XTx[1][j] = x[1][j] + x[2][j]; XTx[1][j] = vaddq_f32(x[1][j], x[2][j]); // XTx[2][j] = x[2][j] - x[1][j]; XTx[2][j] = vsubq_f32(x[2][j], x[1][j]); // XTx[3][j] = x[1][j] - x[3][j]; XTx[3][j] = vsubq_f32(x[1][j], x[3][j]); } // Compute U = XT . x . X for (int i = 0; i < inner_tile_i; i++) { // U[i][0] = XTx[i][0] - XTx[i][2]; U[i][0] = vsubq_f32(XTx[i][0], XTx[i][2]); // U[i][1] = XTx[i][1] + XTx[i][2]; U[i][1] = vaddq_f32(XTx[i][1], XTx[i][2]); // U[i][2] = XTx[i][2] - XTx[i][1]; U[i][2] = vsubq_f32(XTx[i][2], XTx[i][1]); // U[i][3] = XTx[i][1] - XTx[i][3]; U[i][3] = vsubq_f32(XTx[i][1], XTx[i][3]); } // Store the transformed matrix for (int i = 0, m = 0; i < inner_tile_i; i++) { for (int j = 0; j < inner_tile_j; j++, m++) { vst1q_f32(outptr + m*matrix_stride, U[i][j]); } } outptr += 4; } #endif // __aarch64__ #ifdef __arm_any__ for (; channels_remaining >= 2; channels_remaining -= 2) { // Matrices used/computed in this kernel. float32x2_t x[inner_tile_i][inner_tile_j]; float32x2_t XTx[inner_tile_i][inner_tile_j]; float32x2_t U[inner_tile_i][inner_tile_j]; for (int i = 0; i < inner_tile_i; i++) { for (int j = 0; j < inner_tile_j; j++) { x[i][j] = vdup_n_f32(0.0f); XTx[i][j] = vdup_n_f32(0.0f); } } // Load x for (int i = pad_top; i < cells_i; i++) { for (int j = pad_left; j < cells_j; j++) { x[i][j] = vld1_f32(x_ptrs[i][j]); x_ptrs[i][j] += 2; } } // Compute XT . x for (int j = pad_left; j < cells_j; j++) { // XTx[0][j] = x[0][j] - x[2][j]; XTx[0][j] = vsub_f32(x[0][j], x[2][j]); // XTx[1][j] = x[1][j] + x[2][j]; XTx[1][j] = vadd_f32(x[1][j], x[2][j]); // XTx[2][j] = x[2][j] - x[1][j]; XTx[2][j] = vsub_f32(x[2][j], x[1][j]); // XTx[3][j] = x[1][j] - x[3][j]; XTx[3][j] = vsub_f32(x[1][j], x[3][j]); } // Compute U = XT . x . X for (int i = 0; i < inner_tile_i; i++) { // U[i][0] = XTx[i][0] - XTx[i][2]; U[i][0] = vsub_f32(XTx[i][0], XTx[i][2]); // U[i][1] = XTx[i][1] + XTx[i][2]; U[i][1] = vadd_f32(XTx[i][1], XTx[i][2]); // U[i][2] = XTx[i][2] - XTx[i][1]; U[i][2] = vsub_f32(XTx[i][2], XTx[i][1]); // U[i][3] = XTx[i][1] - XTx[i][3]; U[i][3] = vsub_f32(XTx[i][1], XTx[i][3]); } // Store the transformed matrix for (int i = 0, m = 0; i < inner_tile_i; i++) { for (int j = 0; j < inner_tile_j; j++, m++) { vst1_f32(outptr + m*matrix_stride, U[i][j]); } } outptr += 2; } #endif // __arm_any__ for (; channels_remaining; channels_remaining--) { // Load x for (int i = pad_top; i < cells_i; i++) { for (int j = pad_left; j < cells_j; j++) { x[i][j] = *(x_ptrs[i][j]++); } } // Compute XT . x for (int j = pad_left; j < cells_j; j++) { XTx[0][j] = x[0][j] - x[2][j]; XTx[1][j] = x[1][j] + x[2][j]; XTx[2][j] = x[2][j] - x[1][j]; XTx[3][j] = x[1][j] - x[3][j]; } // Compute U = XT . x . X for (int i = 0; i < inner_tile_i; i++) { U[i][0] = XTx[i][0] - XTx[i][2]; U[i][1] = XTx[i][1] + XTx[i][2]; U[i][2] = XTx[i][2] - XTx[i][1]; U[i][3] = XTx[i][1] - XTx[i][3]; } // Store the transformed matrix for (int i = 0, m = 0; i < inner_tile_i; i++) { for (int j = 0; j < inner_tile_j; j++, m++) { *(outptr + m*matrix_stride) = U[i][j]; } } outptr++; } } } // namespace (anonymous) template <> const Tiles::TileFn Tiles::tilefn_generic = winograd_input_transform_4x4_fp32_process_tile; template <> const Tiles::TileFn Tiles::tilefn_unpadded = winograd_input_transform_4x4_fp32_process_tile; template <> const Tiles::TileFn Tiles::tilefn_top_padded[n_pad_top] = { winograd_input_transform_4x4_fp32_process_tile, }; template <> const Tiles::TileFn Tiles::tilefn_left_padded[n_pad_left] = { winograd_input_transform_4x4_fp32_process_tile, }; template <> const Tiles::TileFn Tiles::tilefn_bottom_padded[n_pad_bottom] = { winograd_input_transform_4x4_fp32_process_tile, winograd_input_transform_4x4_fp32_process_tile, winograd_input_transform_4x4_fp32_process_tile, winograd_input_transform_4x4_fp32_process_tile, }; template <> const Tiles::TileFn Tiles::tilefn_right_padded[n_pad_right] = { winograd_input_transform_4x4_fp32_process_tile, winograd_input_transform_4x4_fp32_process_tile, winograd_input_transform_4x4_fp32_process_tile, winograd_input_transform_4x4_fp32_process_tile, }; template class InputTransform<3, 3, 4, 4, float>; } // namespace winograd