/* * Copyright (c) 2022-2024 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include #include namespace arm_conv { namespace winograd { namespace output_transform { void arm_fp32_1x2_1x7( unsigned int n_channels, const float* inptr, size_t matrix_stride, const float* bptr, float *outptr, size_t, // No need to stride across rows size_t output_col_stride, float output_min, float output_max ) { constexpr auto inner_tile_cols = 8u, output_tile_cols = 2u; // For each channel of the output for (; n_channels >= 4; n_channels -= 4) { // Matrices used and computed during this transform float32x4_t F[inner_tile_cols], f[output_tile_cols], b = vdupq_n_f32(0.0f); // Read a 1x8 tile in the Winograd domain for (auto j = 0u; j < inner_tile_cols; j++) { F[j] = vld1q_f32(inptr + j*matrix_stride); } inptr += 4; f[0] = vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmulq_n_f32(F[6], 1), F[5], 1), F[4], 1), F[3], 1), F[2], 1), F[1], 1), F[0], 1); f[1] = vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmulq_n_f32(F[7], 1), F[2], 1), F[6], 3), F[4], 2), F[3], -2), F[5], -3), F[1], -1); // Write out the output tile if (bptr != 0) { b = vld1q_f32(bptr); bptr += 4; } for (auto j = 0u; j < output_tile_cols; j++) { const auto y = vminq_f32(vmaxq_f32(f[j] + b, vdupq_n_f32(output_min)), vdupq_n_f32(output_max)); vst1q_f32(outptr + j*output_col_stride, y); } outptr += 4; } for (; n_channels >= 2; n_channels -= 2) { // Matrices used and computed during this transform float32x2_t F[inner_tile_cols], f[output_tile_cols], b = vdup_n_f32(0.0f); // Read a 1x8 tile in the Winograd domain for (auto j = 0u; j < inner_tile_cols; j++) { F[j] = vld1_f32(inptr + j*matrix_stride); } inptr += 2; f[0] = vmla_n_f32(vmla_n_f32(vmla_n_f32(vmla_n_f32(vmla_n_f32(vmla_n_f32(vmul_n_f32(F[6], 1), F[5], 1), F[4], 1), F[3], 1), F[2], 1), F[1], 1), F[0], 1); f[1] = vmla_n_f32(vmla_n_f32(vmla_n_f32(vmla_n_f32(vmla_n_f32(vmla_n_f32(vmul_n_f32(F[7], 1), F[2], 1), F[6], 3), F[4], 2), F[3], -2), F[5], -3), F[1], -1); // Write out the output tile if (bptr != 0) { b = vld1_f32(bptr); bptr += 2; } for (auto j = 0u; j < output_tile_cols; j++) { const auto y = vmin_f32(vmax_f32(f[j] + b, vdup_n_f32(output_min)), vdup_n_f32(output_max)); vst1_f32(outptr + j*output_col_stride, y); } outptr += 2; } if (n_channels) { // Matrices used and computed during this transform float F[inner_tile_cols], f[output_tile_cols], b = 0.0f; // Read a 1x8 tile in the Winograd domain for (auto j = 0u; j < inner_tile_cols; j++) { F[j] = *(inptr + j*matrix_stride); } f[0] = F[0]*1 + F[1]*1 + F[2]*1 + F[3]*1 + F[4]*1 + F[5]*1 + F[6]*1; f[1] = F[1]*-1 + F[5]*-3 + F[3]*-2 + F[4]*2 + F[6]*3 + F[2]*1 + F[7]*1; // Write out the output tile if (bptr != 0) { b = *(bptr++); } for (auto j = 0u; j < output_tile_cols; j++) { *(outptr + j*output_col_stride) = std::max(std::min(f[j] + b, output_max), output_min); } } } } // namespace output_transform } // namespace winograd } // namespace arm_conv