/* * Copyright (c) 2020-2021 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/Helpers.h" #include "arm_compute/core/ITensorPack.h" #include "arm_compute/core/Window.h" #include "src/core/NEON/SVEMath.h" #include "src/core/common/Validate.h" #include #include #if defined(__ARM_FEATURE_SVE) #include namespace arm_compute { namespace cpu { void fp32_sve_batch_normalization(ITensor *src, ITensor *dst, const ITensor *mean, const ITensor *var, const ITensor *beta, const ITensor *gamma, float epsilon, ActivationLayerInfo &act_info, const Window &window) { const auto window_start_x = static_cast(window.x().start()); const auto window_end_x = static_cast(window.x().end()); Window win_collapsed = window.collapse_if_possible(window, Window::DimZ); win_collapsed.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator input(src, win_collapsed); Iterator output(dst, win_collapsed); const auto input_mean = reinterpret_cast(mean->ptr_to_element(Coordinates(0, 0))); const auto input_var = reinterpret_cast(var->ptr_to_element(Coordinates(0, 0))); const auto input_gamma = (gamma != nullptr) ? reinterpret_cast(gamma->ptr_to_element(Coordinates(0, 0))) : nullptr; const auto input_beta = (beta != nullptr) ? reinterpret_cast(beta->ptr_to_element(Coordinates(0, 0))) : nullptr; const auto epsilon_vec = svdup_n_f32(epsilon); const auto const_1 = svdup_n_f32(1.f); const auto const_0 = svdup_n_f32(0.f); const auto va = svdup_n_f32(act_info.a()); const auto vb = svdup_n_f32(act_info.b()); execute_window_loop(win_collapsed, [&](const Coordinates &) { const auto input_ptr = reinterpret_cast(input.ptr()); const auto output_ptr = reinterpret_cast(output.ptr()); // Compute S elements per iteration int x = window_start_x; svbool_t pg = svwhilelt_b32(x, window_end_x); do { // Conctruct vectors const auto mean_vec = svld1_f32(pg, input_mean + x); const auto var_vec = svld1_f32(pg, input_var + x); const auto gamma_vec = (input_gamma != nullptr) ? svld1_f32(pg, input_gamma + x) : const_1; const auto beta_vec = (input_beta != nullptr) ? svld1_f32(pg, input_beta + x) : const_0; // Calculate denominator const auto tmp = svadd_f32_z(pg, var_vec, epsilon_vec); auto denominator = svrsqrte_f32(tmp); denominator = svmul_f32_z(pg, svrsqrts_f32(svmul_f32_z(pg, tmp, denominator), denominator), denominator); denominator = svmul_f32_z(pg, svrsqrts_f32(svmul_f32_z(pg, tmp, denominator), denominator), denominator); // Calculate x bar const auto numerator = svsub_f32_z(pg, svld1_f32(pg, input_ptr + x), mean_vec); const auto x_bar = svmul_f32_z(pg, numerator, denominator); auto res = svmla_f32_z(pg, beta_vec, x_bar, gamma_vec); // Perform fused activation if(act_info.enabled()) { if(act_info.activation() == ActivationLayerInfo::ActivationFunction::RELU) { res = svmax_f32_z(pg, const_0, res); } else if(act_info.activation() == ActivationLayerInfo::ActivationFunction::BOUNDED_RELU) { res = svmin_f32_z(pg, va, svmax_f32_z(pg, const_0, res)); } else if(act_info.activation() == ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU) { res = svmin_f32_z(pg, va, svmax_f32_z(pg, vb, res)); } } // Store results svst1_f32(pg, output_ptr + x, res); x += svcntw(); pg = svwhilelt_b32(x, window_end_x); } while(svptest_any(svptrue_b32(), pg)); }, input, output); } } // namespace cpu } // namespace arm_compute #endif // __ARM_FEATURE_SVE