/* * Copyright (c) 2018 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/NEON/kernels/assembly/NEGEMMInterleavedPrepareBWrapperKernel.h" #include "NEGEMMInterleavedStrategies.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/ITensor.h" #include "arm_compute/core/Utils.h" #include "arm_compute/core/Validate.h" namespace arm_compute { namespace { // Call the lambda function for each workload generated by the passed window. template void for_each_element_in_window(const Window &window, const ITensor *b, ITensor *transformed_b, unsigned int N, unsigned int K, Lambda &&lambda) { using strategy = typename Kernel::strategy; unsigned int offset_transformed_b = transformed_b->info()->offset_first_element_in_bytes(); execute_window_loop(window, [&](const Coordinates & coordinates) { const unsigned int x0 = coordinates.x(); const unsigned int k0 = coordinates.y(); const unsigned int multi = coordinates.z(); const unsigned int offset_b = b->info()->offset_element_in_bytes(Coordinates(0, 0, multi)); const unsigned int xmax = std::min(x0 + window.x().step(), N); const unsigned int kmax = std::min(k0 + window.y().step(), K); /* Figure out the size of each block. */ unsigned int x_size = (xmax - x0); unsigned int k_size = (kmax - k0); /* Round sizes up as needed. */ x_size = ceil_to_multiple(x_size, strategy::out_width()); k_size = ceil_to_multiple(k_size, strategy::k_unroll()); lambda(PrepareBWorkload(offset_b, offset_transformed_b, x0, xmax, k0, kmax)); //Each workload represents one block: offset_transformed_b += (x_size * k_size * sizeof(To)); }); } // Calculate the size of transformed_b: template unsigned int get_B_pretransposed_array_size(unsigned int N, unsigned int K, const BlockSizes &bs) { using strategy = typename Kernel::strategy; // How many full blocks do N / K contain ? size_t num_full_k = K / bs.k_block; size_t num_full_x = N / bs.x_block; ARM_COMPUTE_ERROR_ON(bs.x_block % strategy::out_width() != 0); ARM_COMPUTE_ERROR_ON(bs.k_block % strategy::k_unroll() != 0); size_t normal_x_size = bs.x_block; size_t normal_k_size = bs.k_block; // Round up the leftovers to be a multiple of the strategy processing size: size_t left_over_x_size = ceil_to_multiple(N % bs.x_block, strategy::out_width()); size_t left_over_k_size = ceil_to_multiple(K % bs.k_block, strategy::k_unroll()); // Calculate the total size of the buffer: size_t total = num_full_k * normal_k_size * (num_full_x * normal_x_size + left_over_x_size); total += left_over_k_size * (left_over_x_size + num_full_x * normal_x_size); return total; } } // namespace template BlockSizes NEGEMMInterleavedPrepareBWrapperKernelTemplate::block_sizes() const { return _block_sizes; } template void NEGEMMInterleavedPrepareBWrapperKernelTemplate::configure(const ITensor *b, ITensor *transformed_b, bool transpose_b, const CPUInfo &ci, const INEGEMMWrapperKernel::Params ¶ms) { using strategy = typename Kernel::strategy; const unsigned int multis = b->info()->tensor_shape().z(); _Nsize = b->info()->tensor_shape().x(); _Ksize = b->info()->tensor_shape().y(); _b = b; _transformed_b = transformed_b; _transpose_b = transpose_b; _block_sizes = calculate_block_sizes(ci, params.M, params.N, params.K); auto_init_if_empty(*transformed_b->info(), b->info()->clone()->set_tensor_shape(TensorShape{ get_B_pretransposed_array_size(_Nsize, _Ksize, _block_sizes) })); Window window; window.set(Window::DimX, Window::Dimension(0, ceil_to_multiple(_Nsize, _block_sizes.x_block), _block_sizes.x_block)); window.set(Window::DimY, Window::Dimension(0, ceil_to_multiple(_Ksize, _block_sizes.k_block), _block_sizes.k_block)); window.set(Window::DimZ, Window::Dimension(0, multis)); INEKernel::configure(window); } template void NEGEMMInterleavedPrepareBWrapperKernelTemplate::transform(const PrepareBWorkload &wl, const ThreadInfo &info) { using strategy = typename Kernel::strategy; strategy strat(info.cpu_info); strat.transforms.PrepareB(reinterpret_cast(_transformed_b->buffer() + wl._offset_transformed_b), reinterpret_cast(_b->buffer() + wl._offset_b), _b->info()->strides_in_bytes().y() / sizeof(To), wl._x0, wl._xmax, wl._k0, wl._kmax, _transpose_b); } template void NEGEMMInterleavedPrepareBWrapperKernelTemplate::create_workloads(std::vector &workloads) { for_each_element_in_window(window(), _b, _transformed_b, _Nsize, _Ksize, [&workloads](PrepareBWorkload && wl) { workloads.push_back(std::move(wl)); }); } template void NEGEMMInterleavedPrepareBWrapperKernelTemplate::run(const Window &window, const ThreadInfo &info) { ARM_COMPUTE_ERROR_ON_MISMATCHING_WINDOWS(window, INEKernel::window()); for_each_element_in_window(window, _b, _transformed_b, _Nsize, _Ksize, [&](PrepareBWorkload && wl) { this->transform(wl, info); }); } template class NEGEMMInterleavedPrepareBWrapperKernelTemplate; #ifdef __aarch64__ template class NEGEMMInterleavedPrepareBWrapperKernelTemplate; template class NEGEMMInterleavedPrepareBWrapperKernelTemplate; template class NEGEMMInterleavedPrepareBWrapperKernelTemplate; template class NEGEMMInterleavedPrepareBWrapperKernelTemplate; #endif /* __aarch64__ */ #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC template class NEGEMMInterleavedPrepareBWrapperKernelTemplate; #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */ } // namespace arm_compute