/* * Copyright (c) 2017-2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #pragma once #include #include "arm_gemm.hpp" #include "mergeresults.hpp" #include "transform.hpp" #ifdef CYCLE_PROFILING #include "profiler.hpp" #endif namespace arm_gemm { // Implementation of the GemmCommon abstract class. // // This is implementation is for a "native" (no-transform) GEMV with a // transposed matrix. // // As a native operation the source data is used in-place, so the internal // and external operand/result types must match. template class GemvNativeTransposed : public GemmCommon { typedef typename strategy::operand_type Toi; typedef typename strategy::result_type Tri; const unsigned int _Nsize; const unsigned int _Ksize; const unsigned int _nmultis; const Tr _beta; const CPUInfo * const _ci; unsigned int m_block=0; unsigned int n_block=0; public: GemvNativeTransposed(GemvNativeTransposed &) = delete; GemvNativeTransposed & operator= (GemvNativeTransposed &) = delete; GemvNativeTransposed(const GemmArgs &args) : _Nsize(args._Nsize), _Ksize(args._Ksize), _nmultis(args._nmulti), _beta(args._beta), _ci(args._ci) { /* For now don't do any blocking. TODO: figure out if we should. */ m_block = _Ksize; n_block = _Nsize; } // Window is number of out_width blocks times number of multis. unsigned int get_window_size() const override { return iceildiv(_Nsize, strategy::out_width()) * _nmultis; } // Actually execute the GEMV. void execute(unsigned int start, unsigned int end, int) override { #ifdef CYCLE_PROFILING profiler prof; #endif strategy strat(_ci); const unsigned int window_per_multi = iceildiv(_Nsize, strategy::out_width()); const unsigned int multi_0 = start / window_per_multi; const unsigned int multi_end = end / window_per_multi; const unsigned int n_0 = (start - (multi_0 * window_per_multi)) * strategy::out_width(); const unsigned int n_max = (end - (multi_end * window_per_multi)) * strategy::out_width(); static_assert(std::is_same::value, "gemv_transposed: Operand types must be the same."); static_assert(std::is_same::value, "gemv_transposed: Result types must be the same."); for (unsigned int multi=multi_0; multi<=multi_end; multi++) { const unsigned int n_start = (multi==multi_0) ? n_0 : 0; const unsigned int n_end = (multi==multi_end) ? n_max : _Nsize; if (n_end <= n_start) continue; for (unsigned int m0=0; m0<_Ksize; m0+=m_block) { unsigned int mmax = std::min(m0 + m_block, _Ksize); for (unsigned int n0=n_start; n0_Bptr + (multi * this->_B_multi_stride) + (m0 * this->_ldb) + n0, this->_Aptr + (multi * this->_A_multi_stride) + m0, this->_Cptr + (multi * this->_C_multi_stride) + n0, _beta, this->_ldb, (mmax-m0), (nmax-n0)); } } } } }; } // namespace arm_gemm