/* * Copyright (c) 2017-2020 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #pragma once #include #include "arm_gemm.hpp" #include "ndrange.hpp" #ifdef CYCLE_PROFILING #include "profiler.hpp" #endif namespace arm_gemm { // Implementation of the GemmCommon abstract class. // // This is implementation is for native GEMM with no transposition. // // By default the source data is used in-place, but if type conversion is // needed we need to allocate working space (CURRENTLY NOT IMPLEMENTED). template class GemmNative : public GemmCommon { typedef typename strategy::operand_type Toi; typedef typename strategy::result_type Tri; const unsigned int _Msize; const unsigned int _Nsize; const unsigned int _Ksize; const unsigned int _nbatches; const unsigned int _nmultis; const Activation _act; const CPUInfo * const _ci; const unsigned int _k_block; const unsigned int _n_block; const NDRange<4> _window_range; static unsigned int compute_k_block(const GemmArgs &args) { return args._Ksize; } static unsigned int compute_n_block(const GemmArgs &args) { if ((args._cfg != nullptr) && args._cfg->outer_block_size > 0) { return args._cfg->outer_block_size; } else { return args._Nsize; } } public: GemmNative(GemmNative &) = delete; GemmNative & operator= (GemmNative &) = delete; GemmNative(const GemmArgs &args) : _Msize(args._Msize), _Nsize(args._Nsize), _Ksize(args._Ksize), _nbatches(args._nbatches), _nmultis(args._nmulti), _act(args._act), _ci(args._ci), _k_block(compute_k_block(args)), _n_block(compute_n_block(args)), _window_range(iceildiv(_Msize, strategy::out_height()), _nbatches, iceildiv(_Nsize, _n_block), _nmultis) { } // Window is amount per multi multiplied by total number of multis. ndrange_t get_window_size() const override { return { _window_range.total_size(), 1u, 1u, 1u, 1u, 1u }; } // Native GEMMs can always be dynamically scheduled (whether requested or not) bool supports_dynamic_scheduling() const override { return true; } // Actually execute the GEMM. void execute_1d(unsigned int start, unsigned int end, int) { #ifdef CYCLE_PROFILING profiler prof; #endif strategy strat(_ci); static_assert(std::is_same::value, "gemm_native: Operand types must be the same."); static_assert(std::is_same::value, "gemm_native: Result types must be the same."); auto p = _window_range.iterator(start, end); if (p.done()) { return; } do { unsigned int y0 = p.dim(0) * strategy::out_height(); unsigned int ymax = std::min(p.dim0_max() * strategy::out_height(), _Msize); unsigned int batch = p.dim(1); unsigned int n0 = p.dim(2) * _n_block; unsigned int nmax = std::min(n0 + _n_block, _Nsize); unsigned int multi = p.dim(3); #ifdef CYCLE_PROFILING auto p = prof.ScopedProfiler(PROFILE_KERNEL, (ymax-y0) * (nmax - n0) * _Ksize); #endif strat.kernel(this->_Aptr + (multi * this->_A_multi_stride) + (batch * this->_A_batch_stride) + (y0 * this->_lda), this->_lda, this->_Bptr + (multi * this->_B_multi_stride) + n0, this->_ldb, this->_Cptr + (multi * this->_C_multi_stride) + (batch * this->_C_batch_stride) + (y0 * this->_ldc) + n0, this->_ldc, (ymax-y0), (nmax-n0), _Ksize, (strategy::supports_bias() && this->_bias) ? this->_bias + (multi * this->_bias_multi_stride) + n0 : nullptr, _act, false); // Add bias externally if needed if (!strategy::supports_bias() && this->_bias) { bias_adder(this->_Cptr + (multi * this->_C_multi_stride) + (batch * this->_C_batch_stride) + (y0 * this->_ldc) + n0, this->_ldc, this->_bias + (multi * this->_bias_multi_stride) + n0, (ymax - y0), (nmax - n0)); } } while (p.next_dim1()); } //Execute void execute(const ndcoord_t& work_range, const ndcoord_t& thread_locator, int threadid) override { UNUSED(thread_locator); const auto start = work_range.get_position(0); const auto stop = work_range.get_position_end(0); execute_1d(start, stop, threadid); } }; } // namespace arm_gemm