/* * Copyright (c) 2017-2020 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #pragma once #include #include #include "arm_gemm.hpp" #include "convolver.hpp" #include "mergeresults.hpp" #include "performance_parameters.hpp" #include "quantized.hpp" #include "transform.hpp" #include "utils.hpp" #ifdef CYCLE_PROFILING #include "profiler.hpp" #endif // Some macros used to decide how much working space to allocate. // Round allocations up to the next cache line. #define ALLOC_ROUND 64 #define ROUND_UP(x) ((((x) + ALLOC_ROUND-1) / ALLOC_ROUND) * ALLOC_ROUND) // Implementation of the GemmCommon abstract class. // // This implementation interleaves the source matrices in blocks - good for // larger matrices. namespace arm_gemm { namespace { // Some kernels output to a linear buffer and require a separate merge step. // Others output directly to the matrix result. This helper class calls the // appropriate functions, using templating to avoid calling non-existent // functions. template class kernel_and_merge { public: template static void run ( #ifdef CYCLE_PROFILING profiler &prof, #endif strategy &strat, const To *a_ptr, const To *b_panel, Tri *c_panel, Tr *c_ptr, int ldc, int kern_k, unsigned int m_0, unsigned int m_max, unsigned int n_0, unsigned int n_max, const Tr *biasptr, const Activation &act, bool accumulate, const OutputStage &os, const int32_t *col_bias, Tab *acc_buff); }; // Run a kernel and call the separate merge step template<> template void kernel_and_merge::run( #ifdef CYCLE_PROFILING profiler &prof, #endif strategy &strat, const To *a_ptr, const To *b_panel, Tri *c_panel, Tr *c_ptr, int ldc, int kern_k, unsigned int m_0, unsigned int m_max, unsigned int n_0, unsigned int n_max, const Tr *biasptr, const Activation &act, bool accumulate, const Nothing &, const int32_t *, Tab *) { const int bblocks = iceildiv(n_max - n_0, strategy::out_width()); { #ifdef CYCLE_PROFILING auto p=prof.ScopedProfiler(PROFILE_KERNEL, (strategy::out_height() * bblocks * strategy::out_width() * kern_k)); #endif strat.kernel(a_ptr, b_panel, c_panel, 1, bblocks, kern_k); } { #ifdef CYCLE_PROFILING auto p=prof.ScopedProfiler(PROFILE_MERGE, (strategy::out_height() * bblocks * strategy::out_width() * sizeof(Tr))); #endif strat.transforms.Merge(c_ptr, c_panel, ldc, m_0, m_max, n_0, n_max, biasptr, act, accumulate); } } // Run a kernel with integrated merge template<> template void kernel_and_merge::run( #ifdef CYCLE_PROFILING profiler &prof, #endif strategy &strat, const To *a_ptr, const To *b_panel, Tri *, Tr *c_ptr, int ldc, int kern_k, unsigned int m_0, unsigned int m_max, unsigned int n_0, unsigned int n_max, const Tr *biasptr, const Activation &act, bool accumulate, const Nothing &, const int32_t *, Tab *acc_buff) { #ifdef CYCLE_PROFILING auto p=prof.ScopedProfiler(PROFILE_KERNEL, (m_max - m_0) * (n_max - n_0) * kern_k); #endif // We need to offset the C pointer, but as it might be NULL (requesting output to accumulation buffer) we need // to be careful not to offset a null pointer. Tri *offset_c_ptr; if (c_ptr == nullptr) { offset_c_ptr = nullptr; } else { offset_c_ptr = c_ptr + m_0 * ldc + n_0; } strat.kernel(// A and B pointers are just the packed panels. a_ptr, b_panel, // Provide relevant part of output array and row stride. offset_c_ptr, ldc, // M, N, K sizes m_max-m_0, n_max - n_0, kern_k, // Bias, activation, accumulation. Need to offset the bias as needed. biasptr ? biasptr + n_0 : nullptr, act, accumulate, // Accumulation buffer. acc_buff ); } // Run a kernel with integrated merge, quantizing template<> template void kernel_and_merge::run( #ifdef CYCLE_PROFILING profiler &prof, #endif strategy &strat, const To *a_ptr, const To *b_panel, Tri *, Tr *c_ptr, int ldc, int kern_k, unsigned int m_0, unsigned int m_max, unsigned int n_0, unsigned int n_max, const Tr *, const Activation &, bool accumulate, const Requantize32 &qp, const int32_t *col_bias, Tab *acc_buff) { #ifdef CYCLE_PROFILING auto p=prof.ScopedProfiler(PROFILE_KERNEL, (m_max - m_0) * (n_max - n_0) * kern_k); #endif strat.kernel(// A and B pointers are just the packed panels. a_ptr, b_panel, // Provide relevant part of output array and row stride. c_ptr + m_0 * ldc + n_0, ldc, // M, N, K sizes m_max-m_0, n_max - n_0, kern_k, // Bias, activation, accumulation. Need to offset the bias as needed. col_bias + n_0, qp, n_0, accumulate, acc_buff); } // Run a kernel and call the separate quantize step template<> template void kernel_and_merge::run( #ifdef CYCLE_PROFILING profiler &prof, #endif strategy &strat, const To *a_ptr, const To *b_panel, Tri *c_panel, Tr *c_ptr, int ldc, int kern_k, unsigned int m_0, unsigned int m_max, unsigned int n_0, unsigned int n_max, const Tr *, const Activation &, bool, const Requantize32 &qp, const int32_t *col_bias, Tab *) { const int bblocks = iceildiv(n_max - n_0, strategy::out_width()); { #ifdef CYCLE_PROFILING auto p=prof.ScopedProfiler(PROFILE_KERNEL, (strategy::out_height() * bblocks * strategy::out_width() * kern_k)); #endif strat.kernel(a_ptr, b_panel, c_panel, 1, bblocks, kern_k); } { #ifdef CYCLE_PROFILING auto p=prof.ScopedProfiler(PROFILE_QUANTIZE, (strategy::out_height() * bblocks * strategy::out_width() * sizeof(Tr))); #endif // The interleaved kernel outputs in blocks - each block is a // row-major matrix of size out_width * out_height. The merge // kernels are designed to deal with this but the requantizer is // not, so we need to requantize one block at a time. for (int i=0; i(a_ptr + strategy::out_height() * kern_k); requantize_block_32(qp, (n_end - n_start), (m_max-m_0), c_panel + (i * strategy::out_width() * strategy::out_height()), strategy::out_width(), c_ptr + m_0 * ldc + n_start, ldc, row_bias, col_bias + n_start, n_start); } } } // Integer GEMMs can be used in two contexts - "normal" where the full 32-bit output is required, or in // "requantizing" context where the output will be requantized. // // These require different input transforms, as if we are requantizing we want to sum the rows of the A input, and // if we are not we don't. // // This helper class allows the appropriate transforms to be found, without requiring kernels that don't support // quantization to define useless "quantized" transforms. template class transform_type { public: typedef decltype(strategy::transforms) type; }; template class transform_type { public: typedef decltype(strategy::transforms_quantized) type; }; // We need a similar trick here to figure out what type the accumulator buffer should be. template class accumulate_buffer_type { public: typedef typename strategy::result_type type; }; template class accumulate_buffer_type { public: typedef int32_t type; }; } // anonymous namespace template class GemmInterleaved : public GemmCommon { typedef typename strategy::operand_type Toi; typedef typename strategy::result_type Tri; typedef typename accumulate_buffer_type::type Tab; /* const properties set by constructor */ const CPUInfo * const _ci; const unsigned int _Msize; const unsigned int _Nsize; const unsigned int _Ksize; const unsigned int _Ksections; const unsigned int _Ktotal; const unsigned int _rounded_Ksize; const unsigned int _nbatches; const unsigned int _nmulti; const bool _thread_columns; const Activation _act; const int _maxthreads; int _nthreads; /* Blocking info */ unsigned int _k_block=0; unsigned int _x_block=0; unsigned int _Mround=0; /* Working space, pretransposed buffer, buffer manager */ const Toi *_B_transposed=nullptr; void *_working_space=nullptr; Tab *_accumulation_buffer=nullptr; /* Output stage */ OutputStage _os; /* Quantized support (in addition to 'output stage' above */ int32_t *col_bias = nullptr; /* Indirect parameters. _indirect_buf doubles as a flag to indicate that "indirect" transform should be used. */ const To * const * const * _indirect_buf = nullptr; /* Convolver - only set up for convolution problems, so also doubles as a flag. */ std::unique_ptr> _convolver = nullptr; unsigned int get_col_sum_size() const { if (std::is_same::value) { return _Nsize * _nmulti * sizeof(int32_t); } else { return 0; } } /* We will need to walk through the blocks of B in a few contexts, so * factor that out. */ class blockwalker { private: /* Size loops, etc. based on our parent's configuration */ const GemmInterleaved &_parent; /* K, X and multi parameters for current iteration. */ unsigned int _k0=0, _x0=0, _multi=0; /* Range of X to iterate over - used in "ForceThreadColumns" cases */ unsigned int _x_start=0; unsigned int _x_end=_parent._Nsize; unsigned int _index=0; bool _done=false; bool _newkblock=true; bool _newmulti=true; public: blockwalker(const GemmInterleaved &parent) : _parent(parent) { } blockwalker(const GemmInterleaved &parent, unsigned int x_start, unsigned int x_end) : _parent(parent), _x0 (_x_start), _x_start(x_start), _x_end(x_end) { } unsigned int xmax() { return std::min(_x0 + _parent._x_block, _x_end); } unsigned int kmax() { return std::min(_k0 + _parent._k_block, _parent._Ktotal); } /* Advance to the next block, return false at the end. */ bool advance(void) { if (_done) { return false; } _newkblock=false; _x0 += _parent._x_block; if (_x0 >= _x_end) { _x0=_x_start; _k0 += _parent._k_block; if (_k0 >= _parent._Ktotal) { _k0=0; _multi++; if (_multi >= _parent._nmulti) { _done=true; return false; } _newmulti=true; } _newkblock=true; } _index++; return true; } unsigned int k0(void) { return _k0; } unsigned int x0(void) { return _x0; } unsigned int multi(void) { return _multi; } unsigned int index(void) { return _index; } bool done(void) { return _done; } bool newkblock(void) { return _newkblock; } }; // "k block" has two distinct uses: figuring out which iterations of K // to actually process, but also various size/pointer computations. The // latter needs to take account of the extra space needed for the row // sums, if appropriate. unsigned int get_total_k_depth() const { unsigned int k_depth = _k_block; if (std::is_same::value) { k_depth += sizeof(int32_t) / sizeof(Toi); } return k_depth; } // A working size. size_t get_a_working_size() const { if (_thread_columns) { // For 2D threading: allocate a buffer of one block of rows per thread return ROUND_UP(sizeof(Toi) * get_total_k_depth() * strategy::out_height() * _maxthreads); } else { // For 1D threaded: one of these needed, regardless of thread count. Divided according to window. return ROUND_UP(sizeof(Toi) * get_total_k_depth() * _Mround * _nbatches); } } // C working size: One needed per thread. Not needed if there is no merge step. size_t get_c_working_size() const { if (MergeStep) { return ROUND_UP(sizeof(Tri) * _x_block * strategy::out_height()); } else { return 0; } } // Accumulation buffer size size_t get_accumulation_buffer_size() const { // We only support an accumulation buffer for non-merge cases. if (MergeStep) { return 0; } // Check if we are actually blocking if (_k_block == _Ktotal) { return 0; } // We are no-merge, non-quantized with active blocking: accumulation buffer needed. size_t size_per_buffer = sizeof(Tab) * strategy::out_height() * strategy::out_width(); size_t num_buffers = iceildiv(_Msize, strategy::out_height()) * iceildiv(_Nsize, strategy::out_width()) * _nbatches * _nmulti; return num_buffers * size_per_buffer; } // Get pointer into accumulation buffer Tab *get_accumulation_buffer(unsigned int M, unsigned int N, unsigned int batch, unsigned int multi) const { // Don't do anything if there's no buffer. if (_accumulation_buffer == nullptr) { return nullptr; } // Here we are indexing an appropriately sized pointer, so no sizeof() needed to convert to bytes. size_t size_per_buffer = strategy::out_height() * strategy::out_width(); size_t buffer_rows = iceildiv(_Msize, strategy::out_height()); size_t buffer_cols = iceildiv(_Nsize, strategy::out_width()); size_t buffers_per_batch = (buffer_rows * buffer_cols); size_t buffers_per_multi = buffers_per_batch * _nbatches; // M/N must reference the top-left corner of a block. size_t row = M / strategy::out_height(); assert(M % strategy::out_height() == 0); size_t col = N / strategy::out_width(); assert(N % strategy::out_width() == 0); size_t buffer_index = multi * buffers_per_multi + batch * buffers_per_batch + row * buffer_cols + col; return _accumulation_buffer + (buffer_index * size_per_buffer); } int32_t row_sum_multiplier() const { if (std::is_same::value) { const Requantize32 *qp = reinterpret_cast(&_os); return -qp->b_offset; } return 0; } // Heuristics to decide whether to use the 'thread columns' regime static bool is_thread_columns(const GemmArgs &args) { // For now, there is a templace parameter to force it. if (ForceThreadColumns) { return true; } // Never do this for single threaded cases. if (args._maxthreads == 1) { return false; } // How many blocks of work are available for threading on M? int m_blocks = iceildiv(args._Msize, strategy::out_height()) * args._nbatches; // If we just can't share the work across threads with the row threading regime. if (args._maxthreads > m_blocks) { return true; } // If the row threading regime is too wasteful (20% threshold) if (((roundup(m_blocks, args._maxthreads) * 100) / m_blocks) > 120) { return true; } return false; } static unsigned int get_ktotal(const GemmArgs &args) { return args._Ksections * roundup(args._Ksize, strategy::k_unroll()); } static unsigned int get_k_block_size(const GemmArgs &args) { if (args._cfg && args._cfg->inner_block_size) { return args._cfg->inner_block_size; } // K blocking not supported if we are requantizing. if (std::is_same::value) { return get_ktotal(args); } const unsigned int L1_size = args._ci->get_L1_cache_size(); unsigned int k_block; // k_block: Find out how much of the larger array can be loaded into half the cache. // This should account for associative caches. k_block = (L1_size / 2) / (sizeof(Toi) * (std::max(strategy::out_width(), strategy::out_height()))); // Needs to be (at least a single) multiple of the K unroll level. k_block /= strategy::k_unroll(); k_block = std::max(k_block, 1U) * strategy::k_unroll(); // Now tune to presented problem size; this is how many blocks we need. unsigned int num_k_blocks = iceildiv(get_ktotal(args), k_block); // So divide the space equally into that many blocks. k_block = iceildiv(get_ktotal(args), num_k_blocks); // And round UP to the K unroll level required. k_block = roundup(k_block, strategy::k_unroll()); assert(k_block > 0); return k_block; } static unsigned int get_x_block_size(const GemmArgs &args) { if (is_thread_columns(args)) { // In 2D mode, override X block, because we will process width first. return roundup(args._Nsize, strategy::out_width()); } if (args._cfg && args._cfg->outer_block_size) { return roundup(args._cfg->outer_block_size, strategy::out_width()); } unsigned int x_block; const unsigned int L2_size = args._ci->get_L2_cache_size(); const unsigned int k_block = get_k_block_size(args); // x_block: Work out how many rows (of length k_block) will fit in the L2 // Don't allocate more than 90% of the L2 to allow for overheads, and subtract off the L1 contents. const unsigned int scaled_l2_size = (L2_size * 9) / 10; const unsigned int k_block_area = k_block * sizeof(Toi) * (strategy::out_width() + strategy::out_height()); // .. if the L1 contents is bigger than the L2, just return a minimal size block. if (k_block_area > scaled_l2_size) { return strategy::out_width(); } x_block = (scaled_l2_size - k_block_area) / (sizeof(Toi) * k_block); // Needs to be (at least a single) multiple of the kernel output width. x_block /= strategy::out_width(); x_block = std::max(x_block, 1u) * strategy::out_width(); // And tune to the presented problem size. unsigned int num_x_blocks = iceildiv(args._Nsize, x_block); x_block = iceildiv(args._Nsize, num_x_blocks); x_block = roundup(x_block, strategy::out_width()); assert(x_block > 0); return x_block; } public: GemmInterleaved(GemmInterleaved &) = delete; GemmInterleaved & operator= (GemmInterleaved &) = delete; /* Constructor */ GemmInterleaved(const GemmArgs &args, const OutputStage &os) : _ci(args._ci), _Msize(args._Msize), _Nsize(args._Nsize), _Ksize(args._Ksize), _Ksections(args._Ksections), _Ktotal(get_ktotal(args)), _rounded_Ksize(roundup(_Ksize, strategy::k_unroll())), _nbatches(args._nbatches), _nmulti(args._nmulti), _thread_columns(is_thread_columns(args)), _act(args._act), _maxthreads(args._maxthreads), _nthreads(args._maxthreads), _k_block(get_k_block_size(args)), _x_block(get_x_block_size(args)), _Mround(roundup(args._Msize, strategy::out_height())), _os(os) { } /* Constructor without OutputStage */ GemmInterleaved(const GemmArgs &args) : _ci(args._ci), _Msize(args._Msize), _Nsize(args._Nsize), _Ksize(args._Ksize), _Ksections(args._Ksections), _Ktotal(get_ktotal(args)), _rounded_Ksize(roundup(_Ksize, strategy::k_unroll())), _nbatches(args._nbatches), _nmulti(args._nmulti), _thread_columns(is_thread_columns(args)), _act(args._act), _maxthreads(args._maxthreads), _nthreads(args._maxthreads), _k_block(get_k_block_size(args)), _x_block(get_x_block_size(args)), _Mround(roundup(args._Msize, strategy::out_height())), _os() { } // Interface implementation - Compulsory functions // Window size: Only the last thread should do a ragged block, so dole // out work in units of out_height. Factor batches into the window, but // not multi for now (as this would cause problems with the buffer // manager). ndrange_t get_window_size() const override { unsigned int row_blocks = (_Mround / strategy::out_height()) * _nbatches; if (_thread_columns) { return { row_blocks, iceildiv(_Nsize, strategy::out_width()) }; } else { // _Mround is a multiple of out_height by definition. return { row_blocks }; } } // set_nthreads: pass on to buffer manager to avoid it waiting for non-existant threads. void set_nthreads(int nthreads) override { _nthreads = std::min(nthreads, _maxthreads); } // Execute void execute(const ndcoord_t &work_range, const ndcoord_t &, int threadid) override { #ifdef CYCLE_PROFILING profiler prof; #endif /* Make sure we've been set up correctly. */ assert(_B_transposed); assert(_working_space); int8_t *working_space_bytes = reinterpret_cast(_working_space); /* Align if needed */ intptr_t working_space_v = reinterpret_cast(_working_space); if (working_space_v & 0x3f) { intptr_t alignment_offset = 0x40 - (working_space_v & 0x3f); working_space_bytes += alignment_offset; } strategy strat(_ci); const auto start = work_range.get_position(0); const auto end = work_range.get_position_end(0); /* Translate 'start' and 'end' into a position within the batches and rows. */ const unsigned int window_per_batch = _Mround / strategy::out_height(); unsigned int batch_0 = start / window_per_batch; unsigned int batch_end = end / window_per_batch; // In ThreadColumns mode, process work one horizontal strip at a time. // Transpose the block of needed rows at the start, then do all the work on that block. if (_thread_columns) { const auto start_x = work_range.get_position(1) * strategy::out_width(); const auto end_x = std::min(work_range.get_position_end(1) * strategy::out_width(), _Nsize); Tri * const c_panel = reinterpret_cast(working_space_bytes + (threadid * get_c_working_size())); Toi * const a_panel = reinterpret_cast(working_space_bytes + (_maxthreads * get_c_working_size()) + (threadid * sizeof(Toi) * get_total_k_depth() * strategy::out_height())); for (unsigned int multi=0; multi<_nmulti; multi++) { for (unsigned int k0=0; k0<_Ktotal; k0+=_k_block) { unsigned int kmax=std::min(k0+_k_block, _Ktotal); unsigned int rounded_width = roundup(_Nsize, strategy::out_width()); const bool first_pass = (k0==0); const bool last_pass = (kmax==_Ktotal); // Figure out how many "K" the kernel will actually process. unsigned int kern_k = roundup(kmax - k0, strategy::k_unroll()); const Toi *b_ptr = _B_transposed + (rounded_width * _Ktotal * multi) + (k0 * rounded_width) + (start_x * kern_k); unsigned int batch = batch_0; unsigned int start_row = (start - (batch_0 * window_per_batch)) * strategy::out_height(); for (unsigned int p=start; p class: this extracts either 'transforms' or // 'transforms_quantized' as appropriate. typename transform_type::value>::type transforms; if (_indirect_buf != nullptr) { transforms.PrepareA_indirect(a_panel, _indirect_buf + (multi * _nbatches * _Ksections) + (batch * _Ksections), _Ksize, _rounded_Ksize, start_row, end_row, k0, kmax, row_sum_multiplier()); } else if (_convolver) { transforms.PrepareA_convolution(a_panel, this->_Aptr + (batch * this->_A_batch_stride) + (multi * this->_A_multi_stride), this->_lda, *_convolver, _rounded_Ksize, start_row, end_row, k0, kmax, row_sum_multiplier()); } else { transforms.PrepareA(a_panel, this->_Aptr + (batch * this->_A_batch_stride) + (multi * this->_A_multi_stride), this->_lda, start_row, end_row, k0, std::min(kmax, _Ksize), row_sum_multiplier()); } } // Perform the kernel and merge step, either separately or together as required. kernel_and_merge::run( #ifdef CYCLE_PROFILING prof, #endif // Strategy and panel pointers strat, a_panel, b_ptr, c_panel, // Result buffer pointers this->_Cptr + (batch * this->_C_batch_stride) + (multi * this->_C_multi_stride), this->_ldc, // K size, and M/N ranges kern_k, start_row, end_row, start_x, end_x, // Only do bias on the first pass ((first_pass && this->_bias) ? this->_bias + (multi * this->_bias_multi_stride) : nullptr), // Only do activation on the last pass, and accumulation on any non-first pass. (last_pass ? _act : Activation()), !first_pass, // Pass in quantization parameters for requantizing kernels (others will ignore) _os, col_bias + (multi * _Nsize), // Accumulation buffer (not yet implemented on this path) static_cast(nullptr)); /* Increment to the next block */ start_row += strategy::out_height(); if (start_row >= _Msize) { start_row = 0; batch++; } } } } } else { blockwalker current(*this); /* Compute the M values to operate on */ unsigned int m_0 = (start - (batch_0 * window_per_batch)) * strategy::out_height(); unsigned int m_max = (end - (batch_end * window_per_batch)) * strategy::out_height(); // Private buffers. Treat working_space as an array of C buffers // (one per thread) first, followed by the (window-divided) A // buffer. // Set a_panel to the base of the A buffers - compute offsets into it based on M/batches later. Toi * const a_panel = reinterpret_cast(working_space_bytes + (_maxthreads * get_c_working_size())); Tri * const c_panel = reinterpret_cast(working_space_bytes + (threadid * get_c_working_size())); const Toi *b_panel; b_panel = _B_transposed; // newkblock() is always true on the first iteration, so these will be set properly on the first loop. // kern_k tracks the accumulation depth for the CURRENT K block a_panel_stride similarly tracks the total // stride of the A panel (i.e. with 4 added for cases with embedded row sums) // These are distinct from k_block and get_total_k_depth() which are based on the target K block size, and // used for addressing inside a_panel. // In cases where K blocking is in use and the blocks are not all the same size, the (smaller) final block // won't use all the memory allocated. unsigned int kern_k = 0; unsigned int a_panel_stride = 0; for (;!current.done();current.advance()) { if (current.newkblock()) { #ifdef CYCLE_PROFILING auto p=prof.ScopedProfiler(PROFILE_PREPA, (end - start) * strategy::out_height() * (current.kmax()-current.k0()) * sizeof(Toi)); #endif // See comment above on transform_type<> class: this extracts either 'transforms' or // 'transforms_quantized' as appropriate. typename transform_type::value>::type transforms; for (unsigned int batch = batch_0; batch <= batch_end; batch++) { unsigned int first_m = (batch == batch_0) ? m_0 : 0; unsigned int last_m = (batch == batch_end) ? m_max : _Msize; if (first_m >= last_m) continue; if (_indirect_buf != nullptr) { transforms.PrepareA_indirect(a_panel + ((batch * _Mround + first_m) * get_total_k_depth()), _indirect_buf + (current.multi() * _nbatches * _Ksections) + (batch * _Ksections), _Ksize, _rounded_Ksize, first_m, last_m, current.k0(), current.kmax(), row_sum_multiplier()); } else if (_convolver) { transforms.PrepareA_convolution(a_panel + ((batch * _Mround + first_m) * get_total_k_depth()), this->_Aptr + (batch * this->_A_batch_stride) + (current.multi() * this->_A_multi_stride), this->_lda, *_convolver, _rounded_Ksize, first_m, last_m, current.k0(), current.kmax(), row_sum_multiplier()); } else { transforms.PrepareA(a_panel + ((batch * _Mround + first_m) * get_total_k_depth()), this->_Aptr + (batch * this->_A_batch_stride) + (current.multi() * this->_A_multi_stride), this->_lda, first_m, last_m, current.k0(), std::min(_Ksize, current.kmax()), row_sum_multiplier()); } } // Figure out how many "K" the kernel will actually process. kern_k = roundup(current.kmax() - current.k0(), strategy::k_unroll()); // Requantizing GEMMs have the row sums built in to the // transposed data, so the stride between rows is 4 bytes // larger than the (rounded) K value. if(std::is_same::value) { a_panel_stride = kern_k + (sizeof(int32_t) / sizeof(Toi)); } else { a_panel_stride = kern_k; } } /* Do the actual work. */ for (unsigned int batch = batch_0; batch <= batch_end; batch++) { unsigned int first_m = (batch == batch_0) ? m_0 : 0; unsigned int last_m = (batch == batch_end) ? m_max : _Msize; const Toi *a_ptr = a_panel + (batch * _Mround + first_m) * get_total_k_depth(); if (first_m >= last_m) continue; // For the merge case we need to do this out_height() rows // at a time, as that is the size of our intermediate // buffer. If we are not doing that, we can do all the // relevant rows in one go. unsigned int m_step = MergeStep ? strategy::out_height() : (last_m - first_m); // But in the case where we have an accumulation buffer, we can't do that after all, unless // there is no N blocking. if (_accumulation_buffer && ((current.x0() != 0) || (current.xmax() < _Nsize))) { m_step = strategy::out_height(); } for (unsigned int y=first_m; y_Cptr + (batch * this->_C_batch_stride) + (current.multi() * this->_C_multi_stride); // If we are using an accumulation buffer, we don't pass the result buffer to ask the kernel // to write things into the accumulation buffer instead, except on the last pass. if (_accumulation_buffer && !last_pass) { result_ptr = nullptr; } // Perform the kernel and merge step, either separately or together as required. kernel_and_merge::run( #ifdef CYCLE_PROFILING prof, #endif // Strategy and panel pointers strat, a_ptr, b_panel, c_panel, // Result buffer pointers result_ptr, this->_ldc, // K size, and M/N ranges kern_k, y, ymax, current.x0(), current.xmax(), // Only do bias on the first pass ((first_pass && this->_bias) ? this->_bias + (current.multi() * this->_bias_multi_stride) : nullptr), // Only do activation on the last pass, and accumulation on any non-first pass. (last_pass ? _act : Activation()), !first_pass, // Pass in quantization parameters for requantizing kernels (others will ignore) _os, col_bias + (current.multi() * _Nsize), // Accumulation buffer get_accumulation_buffer(y, current.x0(), batch, current.multi()) ); a_ptr += (strategy::out_height() * a_panel_stride); } } b_panel += (roundup(current.xmax() - current.x0(), strategy::out_width()) * kern_k); } } } // Interface implementation - working space size_t get_working_size() const override { // In all cases, we need one A buffer plus a C buffer per thread, plus an accumulation buffer. size_t size = get_a_working_size() + (get_c_working_size() * _maxthreads) + get_accumulation_buffer_size(); size += 128; // Add on two cache lines extra for alignment. return size; } void set_working_space(void *working_space) override { // Make sure everything ends up cache line aligned int8_t *working_space_bytes = reinterpret_cast(working_space); intptr_t working_space_int = reinterpret_cast(working_space); size_t diff=0; if (working_space_int & 0x3F) { diff = 0x40 - (working_space_int & 0x3F); } working_space_bytes += diff; working_space_int += diff; // Pretransposed case: just set internal pointer to parameter value. _working_space = reinterpret_cast(working_space_bytes); // Set up accumulation buffer if (get_accumulation_buffer_size() > 0) { intptr_t acc_buff_int = working_space_int + get_a_working_size() + (get_c_working_size() * _maxthreads); // Make sure the accumulation buffer is aligned (needed if the other blocks are not a multiple of cache line length) if (acc_buff_int & 0x3F) { acc_buff_int += (0x40 - (acc_buff_int & 0x3F)); } _accumulation_buffer = reinterpret_cast(acc_buff_int); } else { _accumulation_buffer = nullptr; } } // Interface implementation - pretransposed bool B_is_pretransposed() const override { return true; } bool B_pretranspose_required() const override { return (_B_transposed==nullptr); } size_t get_B_pretransposed_array_size() const override { unsigned int x_size = roundup(_Nsize, strategy::out_width()); return (x_size * _Ktotal * _nmulti * sizeof(Toi)) + get_col_sum_size(); } void pretranspose_B_array(void *in_buffer, const To *B, const int ldb, const int B_multi_stride) override { if (std::is_same::value) { col_bias = reinterpret_cast(in_buffer); Requantize32 *qp_ptr = reinterpret_cast(&_os); for (unsigned int i=0; i<_nmulti; i++) { // The input is assumed not to have any padding between sections, so straightforward Ksize * Ksections computation gets the total size. compute_col_sums(*qp_ptr, _Nsize, _Ksize * _Ksections, B + (i * B_multi_stride), ldb, col_bias + (i * _Nsize), _Ksize * _Ksections, i, 0); } } // Put the transposed data after the column sums - in non-transposing cases get_col_sum_size() == 0 uintptr_t buffer_int = reinterpret_cast(in_buffer); Toi *buffer = reinterpret_cast(buffer_int + get_col_sum_size()); _B_transposed = buffer; blockwalker current(*this); strategy strat(_ci); do { /* Figure out the size of each block. */ unsigned int k_size = (current.kmax() - current.k0()); // We need to insert padding at the end of each K section. // The computation needed is a little delicate - the coordinates from the block walker are expressed in // terms of the full, padded, _Ktotal. // But we need to transform each section with reference to the original, unpadded, input, letting the // transform pad each section as needed. // This is needed for computations below. const unsigned int rounded_section_size = roundup(_Ksize, strategy::k_unroll()); // The expected output format is also an entire columns interleaved, then the next set of // columns, and so on. This means, as we are breaking it up vertically, we have to do it one column at // a time. for (unsigned int x0=current.x0(); x0 < current.xmax(); x0 += strategy::out_width() ){ unsigned int xmax = std::min(x0 + strategy::out_width(), current.xmax()); // Track where we are and how much work is left. unsigned int kpos = current.k0(); unsigned int kleft = k_size; while (kleft) { // Which section are we in? Based on the rounded-up section size. unsigned int k_section_base = kpos / rounded_section_size; // How far into the section are we? unsigned int k_offset = kpos - (k_section_base * rounded_section_size); // We will either copy the rest of this section, or to the end of the requested length. unsigned int k_length = std::min(_Ksize - k_offset, kleft); strat.transforms.PrepareB(buffer, B + (current.multi() * B_multi_stride), ldb, x0, xmax, (k_section_base * _Ksize) + k_offset, // K starting point - compute row to read based on our section and the true section length. (k_section_base * _Ksize) + k_offset + k_length); // K end point - starting point plus length computed above. // We need to modify our position based on the ROUNDED version of what we just did. unsigned int padded_length = roundup(k_length, strategy::k_unroll()); buffer += strategy::out_width() * padded_length; kpos += padded_length; kleft -= padded_length; } } } while (current.advance()); } void set_pretransposed_B_data(void *in_buffer) override { // Put the transposed data after the column sums - in non-transposing cases get_col_sum_size() == 0 uintptr_t buffer_int = reinterpret_cast(in_buffer); _B_transposed = reinterpret_cast(buffer_int + get_col_sum_size()); col_bias = reinterpret_cast(in_buffer); } void set_quantized_bias(const int32_t *bias, size_t bias_multi_stride) override { if (std::is_same::value) { Requantize32 *qp = reinterpret_cast(&_os); qp->bias = bias; qp->bias_multi_stride = bias_multi_stride; } } void set_indirect_parameters(size_t string_len, const To * const * const *ptr) override { assert(string_len == _Ksize); _indirect_buf = ptr; } void set_convolution_parameters(ConvolutionParameters parms) override { assert(parms.input_channels == _Ksize); _convolver = std::unique_ptr>(new convolver(parms)); } // Estimate cycles for given problem given provided parameters static uint64_t estimate_cycles(const GemmArgs &args, const PerformanceParameters ¶ms) { unsigned int k_blocks = iceildiv(args._Ksize, get_k_block_size(args)); uint64_t total_macs = static_cast(args._nbatches) * args._nmulti * roundup(args._Msize, strategy::out_height()) * roundup(args._Nsize, strategy::out_width()) * roundup(args._Ksize, strategy::k_unroll()); uint64_t prepare_bytes = static_cast(args._nbatches) * args._nmulti * roundup(args._Msize, strategy::out_height()) * roundup(args._Ksize, strategy::k_unroll()) * sizeof(Toi); uint64_t merge_bytes = static_cast(args._nbatches) * args._nmulti * k_blocks * roundup(args._Msize, strategy::out_height()) * roundup(args._Nsize, strategy::out_width()) * sizeof(Tr); float mac_cycles = static_cast(total_macs) / params.kernel_macs_cycle; float prepare_cycles = static_cast(prepare_bytes) / params.prepare_bytes_cycle; float merge_cycles = static_cast(merge_bytes) / params.merge_bytes_cycle; float total_cycles = mac_cycles + prepare_cycles + merge_cycles; // We can't thread over multis or width, which makes this a poor // choice in many threaded cases. Penalize that here. float parallelism_available = static_cast(iceildiv(args._Msize, strategy::out_height()) * args._nbatches) * 0.9f; if (parallelism_available < args._maxthreads) { total_cycles *= (static_cast(args._maxthreads) / parallelism_available); } return static_cast(total_cycles); } }; // Aliases for the variations template using GemmInterleavedNoMerge = GemmInterleaved; template using GemmInterleavedPretransposedNoMergeQuantizedInline = GemmInterleaved; template using GemmInterleavedQuantized = GemmInterleaved; } // namespace arm_gemm