/* * Copyright (c) 2017-2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #pragma once #include #include #include #include "arm_gemm.hpp" #include "utils.hpp" #include "buffer_manager.hpp" #include "mergeresults.hpp" #include "transform.hpp" #ifdef CYCLE_PROFILING #include "profiler.hpp" #endif // Some macros used to decide how much working space to allocate. // Round allocations up to the next cache line. #define ALLOC_ROUND 64 #define ROUND_UP(x) ((((x) + ALLOC_ROUND-1) / ALLOC_ROUND) * ALLOC_ROUND) // Implementation of the GemmCommon abstract class. // // This implementation interleaves the source matrices in blocks - good for // larger matrices. namespace arm_gemm { template class GemmInterleaved : public GemmCommon { typedef typename strategy::operand_type Toi; typedef typename strategy::result_type Tri; /* const properties set by constructor */ const CPUInfo * const _ci; const unsigned int _Msize; const unsigned int _Nsize; const unsigned int _Ksize; const unsigned int _nbatches; const unsigned int _nmulti; const bool _trA; const bool _trB; const Tr _alpha; const Tr _beta; const int _maxthreads; int _nthreads; const bool _pretransposed; /* Blocking info */ unsigned int _k_block=0; unsigned int _x_block=0; unsigned int _Mround=0; /* Working space, pretransposed buffer, buffer manager */ const Toi *_B_transposed=nullptr; BufferManager *_bm=nullptr; void *_working_space=nullptr; /* We will need to walk through the blocks of B in a few contexts, so * factor that out. */ class blockwalker { private: /* Size loops, etc. based on our parent's configuration */ const GemmInterleaved &_parent; /* K, X and multi parameters for current iteration. */ unsigned int _k0=0, _x0=0, _multi=0; unsigned int _index=0; bool _done=false; bool _newkblock=true; bool _newmulti=true; public: blockwalker(const GemmInterleaved &parent) : _parent(parent) { } unsigned int xmax() { return std::min(_x0 + _parent._x_block, _parent._Nsize); } unsigned int kmax() { return std::min(_k0 + _parent._k_block, _parent._Ksize); } /* Advance to the next block, return false at the end. */ bool advance(void) { if (_done) { return false; } _newkblock=false; _x0 += _parent._x_block; if (_x0 >= _parent._Nsize) { _x0=0; _k0 += _parent._k_block; if (_k0 >= _parent._Ksize) { _k0=0; _multi++; if (_multi >= _parent._nmulti) { _done=true; return false; } _newmulti=true; } _newkblock=true; } _index++; return true; } unsigned int k0(void) { return _k0; } unsigned int x0(void) { return _x0; } unsigned int multi(void) { return _multi; } unsigned int index(void) { return _index; } bool done(void) { return _done; } bool newkblock(void) { return _newkblock; } }; // A working size: One of these needed, regardless of thread count. Divided according to window. size_t get_a_working_size() const { return ROUND_UP(sizeof(Toi) * _k_block * _Mround * _nbatches); } // B working size: 0, 1 or 3 of these needed depending on pretransposed and threading settings. size_t get_b_working_size() const { return ROUND_UP(sizeof(Toi) * _x_block * _k_block); } // C working size: One needed per thread. size_t get_c_working_size() const { return ROUND_UP(sizeof(Tri) * _x_block * strategy::out_height()); } // Internal execute function. // This supports both the "pretransposed" and "standard" interfaces via the template parameter. template void execute_internal(unsigned int start, unsigned int end, int threadid) { #ifdef CYCLE_PROFILING profiler prof; #endif strategy strat(_ci); blockwalker current(*this); blockwalker next=current; /* Translate 'start' and 'end' into a position within the batches and rows. */ const unsigned int window_per_batch = _Mround / strategy::out_height(); unsigned int batch_0 = start / window_per_batch; unsigned int batch_end = end / window_per_batch; /* Compute the M values to operate on */ unsigned int m_0 = (start - (batch_0 * window_per_batch)) * strategy::out_height(); unsigned int m_max = (end - (batch_end * window_per_batch)) * strategy::out_height(); /* Make sure we've been set up correctly. */ if (pretransposed) { assert(_B_transposed); } else { assert(_bm); } assert(_working_space); int8_t *working_space_bytes = reinterpret_cast(_working_space); // Private buffers. Treat working_space as an array of C buffers // (one per thread) first, followed by the (window-divided) A // buffer. // Set a_panel to the base of the A buffers - compute offsets into it based on M/batches later. Toi * const a_panel = reinterpret_cast(working_space_bytes + (_maxthreads * get_c_working_size())); Tri * const c_panel = reinterpret_cast(working_space_bytes + (threadid * get_c_working_size())); // Shared buffers - these come either from BufferManager or _B_transposed. const Toi *b_panel; if (pretransposed) { b_panel = _B_transposed; } //printf("Starting GEMM loop, x_block=%d, k_block=%d\n", _x_block, _k_block); // newkblock() is always true on the first iteration, so this will be set properly on the first loop. int kern_k = 0; for (;!current.done();current.advance()) { if (current.newkblock()) { #ifdef CYCLE_PROFILING auto p=prof.ScopedProfiler(PROFILE_PREPA, (end - start) * strategy::out_height() * (current.kmax()-current.k0()) * sizeof(Toi)); #endif for (unsigned int batch = batch_0; batch <= batch_end; batch++) { unsigned int first_m = (batch == batch_0) ? m_0 : 0; unsigned int last_m = (batch == batch_end) ? m_max : _Msize; if (first_m >= last_m) continue; strat.transforms.PrepareA(a_panel + ((batch * _Mround + first_m) * _k_block), this->_Aptr + (batch * this->_A_batch_stride) + (current.multi() * this->_A_multi_stride), this->_lda, first_m, last_m, current.k0(), current.kmax(), _trA); } // Figure out how many "K" the kernel will actually process. kern_k = iceildiv(current.kmax() - current.k0(), strategy::k_unroll()); kern_k *= strat.k_unroll(); } int bblocks = iceildiv(current.xmax() - current.x0(), strategy::out_width()); if (!pretransposed) { /* Look ahead to the next block and populate it if necessary. * This avoids the populate operation becoming a bottleneck, and * helps keep the threads synchronized (the first thread to get * here will populate while the rest will advance). * * If we are running single threaded, bm->try_populate() will do * nothing. */ if (next.advance()) { _bm->try_populate(next.index(), [&](void *buffer) { #ifdef CYCLE_PROFILING auto p=prof.ScopedProfiler(PROFILE_PREPB, (next.xmax()-next.x0()) * (next.kmax()-next.k0()) * sizeof(Toi)); #endif Toi *b_panel = reinterpret_cast(buffer); strat.transforms.PrepareB(b_panel, this->_Bptr + (next.multi() * this->_B_multi_stride), this->_ldb, next.x0(), next.xmax(), next.k0(), next.kmax(), _trB); }); } /* Get the buffer for this iteration from the BufferManager. */ b_panel = reinterpret_cast(_bm->get(current.index(), [&](void *bpv) { #ifdef CYCLE_PROFILING auto p=prof.ScopedProfiler(PROFILE_PREPB, (current.xmax()-current.x0()) * (current.kmax()-current.k0()) * sizeof(Toi)); #endif Toi *b_panel = reinterpret_cast(bpv); strat.transforms.PrepareB(b_panel, this->_Bptr + (current.multi() * this->_B_multi_stride), this->_ldb, current.x0(), current.xmax(), current.k0(), current.kmax(), _trB); })); } /* Do the actual work. */ for (unsigned int batch = batch_0; batch <= batch_end; batch++) { unsigned int first_m = (batch == batch_0) ? m_0 : 0; unsigned int last_m = (batch == batch_end) ? m_max : _Msize; const Toi *a_ptr = a_panel + (batch * _Mround + first_m) * _k_block; if (first_m >= last_m) continue; for (unsigned int y=first_m; y_Cptr + (batch * this->_C_batch_stride) + (current.multi() * this->_C_multi_stride), c_panel, this->_ldc, y, ymax, current.x0(), current.xmax(), _alpha, (current.k0()==0 ? _beta : static_cast(1))); } } } if (pretransposed) { b_panel += (bblocks * strat.out_width() * kern_k); } else { _bm->release(current.index()); } } } public: GemmInterleaved(GemmInterleaved &) = delete; GemmInterleaved & operator= (GemmInterleaved &) = delete; /* Constructor */ GemmInterleaved(const GemmArgs &args) : _ci(args._ci), _Msize(args._Msize), _Nsize(args._Nsize), _Ksize(args._Ksize), _nbatches(args._nbatches), _nmulti(args._nmulti), _trA(args._trA), _trB(args._trB), _alpha(args._alpha), _beta(args._beta), _maxthreads(args._maxthreads), _nthreads(args._maxthreads), _pretransposed(args._pretransposed_hint) { const unsigned int L1_size = _ci->get_L1_cache_size(); const unsigned int L2_size = _ci->get_L2_cache_size(); assert(_maxthreads > 0); // Work out blocking parameters, or override from provided GemmConfig if (args._cfg && args._cfg->inner_block_size) { _k_block = args._cfg->inner_block_size; } else { // k_block: Find out how much of the larger array can be loaded into half the cache. // This should account for associative caches. _k_block = (L1_size / 2) / (sizeof(Toi) * (std::max(strategy::out_width(), strategy::out_height()))); // Needs to be (at least a single) multiple of the K unroll level. _k_block /= strategy::k_unroll(); _k_block = std::max(_k_block, 1U) * strategy::k_unroll(); // Now tune to presented problem size; this is how many blocks we need. unsigned int num_k_blocks = iceildiv(_Ksize, _k_block); // So divide the space equally into that many blocks. _k_block = iceildiv(_Ksize, num_k_blocks); // And round UP to the K unroll level required. _k_block = iceildiv(_k_block, strategy::k_unroll()); _k_block *= strategy::k_unroll(); } if (args._cfg && args._cfg->outer_block_size) { _x_block = args._cfg->outer_block_size; } else { // x_block: Work out how many rows (of length k_block) will fit in the L2 // Don't allocate more than 90% of the L2 to allow for overheads, and subtract off the L1 contents. _x_block = (((L2_size * 9) / 10) - (_k_block * sizeof(Toi) * (strategy::out_width() + strategy::out_height()))) / (sizeof(Toi) * _k_block); // Needs to be (at least a single) multiple of the kernel output width. _x_block /= strategy::out_width(); _x_block = std::max(_x_block, 1U) * strategy::out_width(); // And tune to the presented problem size. unsigned int num_x_blocks = iceildiv(_Nsize, _x_block); _x_block = iceildiv(_Nsize, num_x_blocks); _x_block = iceildiv(_x_block, strategy::out_width()); _x_block *= strategy::out_width(); } // Work out the rounded size of M - needed for some buffers. _Mround = iceildiv(_Msize, strategy::out_height()); _Mround *= strategy::out_height(); } // Interface implementation - Compulsory functions // Window size: Only the last thread should do a ragged block, so dole // out work in units of out_height. Factor batches into the window, but // not multi for now (as this would cause problems with the buffer // manager). unsigned int get_window_size() const override { // _Mround is a multiple of out_height by definition. return (_Mround / strategy::out_height()) * _nbatches; } // set_nthreads: pass on to buffer manager to avoid it waiting for non-existant threads. void set_nthreads(int nthreads) override { _nthreads = std::min(nthreads, _maxthreads); if (_bm) { _bm->set_nthreads(_nthreads); } } // Execute void execute(unsigned int start, unsigned int end, int threadid) override { if (_pretransposed) { execute_internal(start, end, threadid); } else { execute_internal(start, end, threadid); } } // Interface implementation - working space size_t get_working_size() const override { // In all cases, we need one A buffer plus a C buffer per thread. size_t size = get_a_working_size() + (get_c_working_size() * _maxthreads); // For pretransposed case, there is no working space needed for B. // Otherwise, we need a BufferManager. if (!_pretransposed) { size += BufferManager::get_storage_requirement(_maxthreads, get_b_working_size()); } size += 64; // Add on a cache line extra for alignment. return size; } void set_working_space(void *working_space) override { // Make sure everything ends up cache line aligned int8_t *working_space_bytes = reinterpret_cast(working_space); intptr_t working_space_int = reinterpret_cast(working_space); size_t diff=0; if (working_space_int & 0x3F) { diff = 0x40 - (working_space_int & 0x3F); } working_space_bytes += diff; if (_pretransposed) { // Pretransposed case: just set internal pointer to parameter value. _working_space = reinterpret_cast(working_space_bytes); } else { // Otherwise, use the first part of the working space for the buffer manager. // It's legal to call this again so don't leak a buffer manager if it already existed. delete _bm; _bm = new BufferManager(_nthreads, get_b_working_size(), reinterpret_cast(working_space_bytes)); working_space_bytes += BufferManager::get_storage_requirement(_maxthreads, get_b_working_size()); _working_space = reinterpret_cast(working_space_bytes); } } // Interface implementation - pretransposed bool B_is_pretransposed() const override { return _pretransposed; } bool B_pretranspose_required() const override { return _pretransposed && (_B_transposed==nullptr); } // TODO: this could almost certainly be considerably simpler. size_t get_B_pretransposed_array_size() const override { size_t total=0; blockwalker current(*this); do { /* Figure out the size of each block. */ unsigned int x_size = (current.xmax() - current.x0()); unsigned int k_size = (current.kmax() - current.k0()); /* Round sizes up as needed. */ x_size = iceildiv(x_size, strategy::out_width()); x_size *= strategy::out_width(); k_size = iceildiv(k_size, strategy::k_unroll()); k_size *= strategy::k_unroll(); total += x_size * k_size * sizeof(Toi); } while (current.advance()); return total; } void pretranspose_B_array(void *in_buffer, const To *B, const int ldb, const int B_multi_stride) override { blockwalker current(*this); Toi *buffer = reinterpret_cast(in_buffer); _B_transposed = buffer; strategy strat(_ci); do { /* Figure out the size of each block. */ unsigned int x_size = (current.xmax() - current.x0()); unsigned int k_size = (current.kmax() - current.k0()); /* Round sizes up as needed. */ x_size = iceildiv(x_size, strategy::out_width()); x_size *= strategy::out_width(); k_size = iceildiv(k_size, strategy::k_unroll()); k_size *= strategy::k_unroll(); strat.transforms.PrepareB(buffer, B + (current.multi() * B_multi_stride), ldb, current.x0(), current.xmax(), current.k0(), current.kmax(), _trB); buffer += (x_size * k_size); } while (current.advance()); } void set_pretransposed_B_data(void *in_buffer) override { _B_transposed = reinterpret_cast(in_buffer); } ~GemmInterleaved() override { delete _bm; } }; } // namespace arm_gemm