/* * Copyright (c) 2017-2020 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #pragma once #include #include #include "arm_gemm.hpp" #include "bias_adder.hpp" #include "ndrange.hpp" #include "performance_parameters.hpp" #include "transform.hpp" #include "utils.hpp" #ifdef CYCLE_PROFILING #include "profiler.hpp" #endif namespace arm_gemm { // Implementation of the GemmCommon abstract class. template class GemmHybrid : public GemmCommon { typedef typename strategy::operand_type Toi; typedef typename strategy::result_type Tri; /* const properties set by constructor */ const CPUInfo * const _ci; const unsigned int _Msize; const unsigned int _Nsize; const unsigned int _Ksize; const unsigned int _nbatches; const unsigned int _nmulti; const Activation _act; /* Blocking info */ const unsigned int _k_block; const unsigned int _n_block; const unsigned int _Mround; /* Pretransposed buffer. */ const Toi *_B_transposed=nullptr; const NDRange<4> _window_range; static unsigned int compute_k_block(const GemmArgs &args) { // Some kernels don't support accumulate mode - these can't do K blocking at all. if (!strategy::supports_accumulate()) { return args._Ksize; } if (args._cfg && args._cfg->inner_block_size) { return args._cfg->inner_block_size; } // Target block size (512 for FP32, scaling for other types). Don't block until size reaches 1.5X this. unsigned int target_block_size = 2048 / sizeof(To); if (args._Ksize >= ((3 * target_block_size) / 2)) { unsigned int target_blocks = iceildiv(args._Ksize, target_block_size); unsigned int block_size = iceildiv(args._Ksize, target_blocks); block_size = roundup(block_size, strategy::k_unroll()); return block_size; } return args._Ksize; } // New N blocking strategy: if it's narrow, or much taller than it is wide, do the full width. Otherwise do a // single block. static unsigned int compute_n_block(const GemmArgs &args) { if (args._cfg && args._cfg->outer_block_size) { return args._cfg->outer_block_size; } if (args._Nsize <= 64) { return args._Nsize; } if ((args._Msize / args._Nsize) > 155) { return args._Nsize; } // Go slightly wider if thread count and depth are small. if ((args._Ksize <= 128) && (args._maxthreads <= 16)) { return strategy::out_width() * 3; } return strategy::out_width(); } public: GemmHybrid(GemmHybrid &) = delete; GemmHybrid & operator= (GemmHybrid &) = delete; /* Constructor */ GemmHybrid(const GemmArgs &args) : _ci(args._ci), _Msize(args._Msize), _Nsize(args._Nsize), _Ksize(args._Ksize), _nbatches(args._nbatches), _nmulti(args._nmulti), _act(args._act), _k_block(compute_k_block(args)), _n_block(compute_n_block(args)), _Mround(roundup(args._Msize, strategy::out_height())), _window_range(iceildiv(args._Msize, strategy::out_height()), _nbatches, iceildiv(_Nsize, _n_block), _nmulti) { } // Interface implementation - Compulsory functions ndrange_t get_window_size() const override { return { _window_range.total_size() }; } // This kernel can always be dynamically scheduled. bool supports_dynamic_scheduling() const override { return true; } // Execute void execute(const ndcoord_t &work_range, const ndcoord_t &, int) override { #ifdef CYCLE_PROFILING profiler prof; #endif strategy strat(_ci); /* Make sure we've been set up correctly. */ assert(_B_transposed); static_assert(std::is_same::value, "gemm_native: Operand types must be the same."); static_assert(std::is_same::value, "gemm_native: Result types must be the same."); /* For now, each work item implies all the K for a given output * pixel (so we don't need to synchronize access to the output * array). So separate the loop over K blocks here. */ for (unsigned int k0=0; k0<_Ksize; k0+=_k_block) { unsigned int kmax = std::min(k0 + _k_block, _Ksize); unsigned int kern_k = roundup(kmax-k0, strategy::k_unroll()); const bool first_pass = (k0 == 0); const bool last_pass = (kmax == _Ksize); auto p = _window_range.iterator(work_range.get_position(0), work_range.get_position_end(0)); if (p.done()) { return; } do { const unsigned int m_start = p.dim(0) * strategy::out_height(); const unsigned int m_end = std::min(p.dim0_max() * strategy::out_height(), _Msize); const unsigned int batch = p.dim(1); const unsigned int n0 = p.dim(2) * _n_block; const unsigned int nmax = std::min(n0 + _n_block, _Nsize); const unsigned int multi = p.dim(3); const Toi *b_panel = _B_transposed + (multi * roundup(_Nsize, strategy::out_width()) * roundup(_Ksize, strategy::k_unroll())) + (k0 * roundup(_Nsize, strategy::out_width())) + (n0 * kern_k); #ifdef CYCLE_PROFILING auto p = prof.ScopedProfiler(PROFILE_KERNEL, (unsigned long)(m_end - m_start) * kern_k * roundup(nmax-n0, strategy::out_width())); #endif strat.kernel(this->_Aptr + (multi * this->_A_multi_stride) + (batch * this->_A_batch_stride) + (m_start * this->_lda) + k0, this->_lda, b_panel, this->_Cptr + (multi * this->_C_multi_stride) + (batch * this->_C_batch_stride) + (m_start * this->_ldc) + n0, this->_ldc, (m_end - m_start), (nmax - n0), kmax-k0, (strategy::supports_bias() && first_pass && this->_bias) ? this->_bias + (multi * this->_bias_multi_stride) + n0 : nullptr, last_pass ? _act : Activation(), !first_pass); // Add bias externally if needed if (!strategy::supports_bias() && this->_bias && first_pass) { bias_adder(this->_Cptr + (multi * this->_C_multi_stride) + (batch * this->_C_batch_stride) + (m_start * this->_ldc) + n0, this->_ldc, this->_bias + (multi * this->_bias_multi_stride) + n0, (m_end - m_start), (nmax - n0)); } } while (p.next_dim1()); } } // Interface implementation - pretransposed bool B_is_pretransposed() const override { return true; } bool B_pretranspose_required() const override { return (_B_transposed==nullptr); } size_t get_B_pretransposed_array_size() const override { return roundup(_Nsize, strategy::out_width()) * roundup(_Ksize, strategy::k_unroll()) * _nmulti * sizeof(Toi); } void pretranspose_B_array(void *in_buffer, const To *B, const int ldb, const int B_multi_stride) override { Toi *buffer = reinterpret_cast(in_buffer); _B_transposed = buffer; strategy strat(_ci); for (unsigned int multi=0; multi<_nmulti; multi++) { for (unsigned int k0=0; k0<_Ksize; k0+=_k_block) { const unsigned int kmax = std::min(k0 + _k_block, _Ksize); const unsigned int k_size = roundup(kmax-k0, strategy::k_unroll()); for (unsigned int x0=0; x0<_Nsize; x0+=_n_block) { const unsigned int xmax = std::min(x0+_n_block, _Nsize); const unsigned int size = roundup(xmax-x0, strategy::out_width()) * k_size; strat.transforms.PrepareB( buffer, B + (multi * B_multi_stride), ldb, x0, xmax, k0, kmax); buffer += size; } } } } void set_pretransposed_B_data(void *in_buffer) override { _B_transposed = reinterpret_cast(in_buffer); } // Estimate cycles for given problem given provided parameters static uint64_t estimate_cycles(const GemmArgs &args, const PerformanceParameters ¶ms) { // Note: Current hybrid kernels don't actually round up height (they // have paths for each possible height). Might need to make this // configurable in future. uint64_t total_macs = static_cast(args._nbatches) * args._nmulti * args._Msize * roundup(args._Nsize, strategy::out_width()) * roundup(args._Ksize, strategy::k_unroll()); float mac_cycles = static_cast(total_macs) / params.kernel_macs_cycle; // TODO: A bit of a kludge here: current hybrid kernels incur extra // overhead where the width is not a multiple of kernel width. It's // most noticable where the overall width is quite low, so add 15% // penalty for such widths. if ((args._Nsize < strategy::out_width()) || (args._Nsize > strategy::out_width() && args._Nsize < 2*strategy::out_width())) { mac_cycles *= 1.15f; } uint64_t total_cycles = mac_cycles; return total_cycles; } }; } // namespace arm_gemm