/* * Copyright (c) 2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #pragma once #include #include #include "arm_gemm.hpp" #include "ndrange.hpp" #include "utils.hpp" #include "mergeresults.hpp" #include "transform.hpp" #ifdef CYCLE_PROFILING #include "profiler.hpp" #endif namespace arm_gemm { // Implementation of the GemmCommon abstract class. template class GemmHybrid : public GemmCommon { typedef typename strategy::operand_type Toi; typedef typename strategy::result_type Tri; /* const properties set by constructor */ const CPUInfo * const _ci; const unsigned int _Msize; const unsigned int _Nsize; const unsigned int _Ksize; const unsigned int _nbatches; const unsigned int _nmulti; const bool _trB; const Tr _beta; /* Blocking info */ const unsigned int _k_block; const unsigned int _n_block; const unsigned int _Mround; /* Pretransposed buffer. */ const Toi *_B_transposed=nullptr; const NDRange<4> _window_range; static unsigned int compute_k_block(const GemmArgs &args) { if (args._cfg && args._cfg->inner_block_size) { return args._cfg->inner_block_size; } const unsigned int L1_size = args._ci->get_L1_cache_size(); // k_block: Find out how much of the larger array can be loaded into half the cache. // This should account for associative caches. unsigned int k_block = (L1_size / 2) / (sizeof(Toi) * (std::max(strategy::out_width(), strategy::out_height()))); // Needs to be (at least a single) multiple of the K unroll level. k_block /= strategy::k_unroll(); k_block = std::max(k_block, 1U) * strategy::k_unroll(); // Now tune to presented problem size; this is how many blocks we need. unsigned int numk_blocks = iceildiv(args._Ksize, k_block); // So divide the space equally into that many blocks. k_block = iceildiv(args._Ksize, numk_blocks); // And round UP to the K unroll level required. k_block = roundup(k_block, strategy::k_unroll()); return k_block; } static unsigned int compute_n_block(const GemmArgs &args) { if (args._cfg && args._cfg->outer_block_size) { return args._cfg->outer_block_size; } const unsigned int k_block = compute_k_block(args); const unsigned int L2_size = args._ci->get_L2_cache_size(); // n_block: Work out how many rows (of length k_block) will fit in the L2 // Don't allocate more than 90% of the L2 to allow for overheads, and subtract off the L1 contents. unsigned int n_block = (((L2_size * 9) / 10) - (k_block * sizeof(Toi) * (strategy::out_width() + strategy::out_height()))) / (sizeof(Toi) * k_block); // Needs to be (at least a single) multiple of the kernel output width. n_block /= strategy::out_width(); n_block = std::max(n_block, 1U) * strategy::out_width(); // And tune to the presented problem size. unsigned int numblocks = iceildiv(args._Nsize, n_block); n_block = iceildiv(args._Nsize, numblocks); n_block = roundup(n_block, strategy::out_width()); return n_block; } public: GemmHybrid(GemmHybrid &) = delete; GemmHybrid & operator= (GemmHybrid &) = delete; /* Constructor */ GemmHybrid(const GemmArgs &args) : _ci(args._ci), _Msize(args._Msize), _Nsize(args._Nsize), _Ksize(args._Ksize), _nbatches(args._nbatches), _nmulti(args._nmulti), _trB(args._trB), _beta(args._beta), _k_block(compute_k_block(args)), _n_block(compute_n_block(args)), _Mround(roundup(args._Msize, strategy::out_height())), _window_range(iceildiv(args._Msize, strategy::out_height()), _nbatches, iceildiv(_Nsize, _n_block), _nmulti) { } // Interface implementation - Compulsory functions unsigned int get_window_size() const override { return _window_range.total_size(); } // This kernel can always be dynamically scheduled. bool supports_dynamic_scheduling() const override { return true; } // Execute void execute(unsigned int start, unsigned int end, int threadid) override { UNUSED(threadid); #ifdef CYCLE_PROFILING profiler prof; #endif strategy strat(_ci); /* Make sure we've been set up correctly. */ assert(_B_transposed); static_assert(std::is_same::value, "gemm_native: Operand types must be the same."); static_assert(std::is_same::value, "gemm_native: Result types must be the same."); /* For now, each work item implies all the K for a given output * pixel (so we don't need to synchronize access to the output * array). So separate the loop over K blocks here. */ for (unsigned int k0=0; k0<_Ksize; k0+=_k_block) { unsigned int kmax = std::min(k0 + _k_block, _Ksize); unsigned int kern_k = roundup(kmax-k0, strategy::k_unroll()); auto p = _window_range.iterator(start, end); if (p.done()) { return; } do { const unsigned int m_start = p.dim(0) * strategy::out_height(); const unsigned int m_end = std::min(p.dim0_max() * strategy::out_height(), _Msize); const unsigned int batch = p.dim(1); const unsigned int n0 = p.dim(2) * _n_block; const unsigned int nmax = std::min(n0 + _n_block, _Nsize); const unsigned int multi = p.dim(3); const Toi *b_panel = _B_transposed + (multi * roundup(_Nsize, strategy::out_width()) * roundup(_Ksize, strategy::k_unroll())) + (k0 * roundup(_Nsize, strategy::out_width())) + (n0 * kern_k); #ifdef CYCLE_PROFILING auto p = prof.ScopedProfiler(PROFILE_KERNEL, (m_end - m_start) * kern_k * roundup(nmax-n0, strategy::out_width())); #endif strat.kernel(this->_Aptr + (multi * this->_A_multi_stride) + (batch * this->_A_batch_stride) + (m_start * this->_lda) + k0, this->_lda, b_panel, this->_Cptr + (multi * this->_C_multi_stride) + (batch * this->_C_batch_stride) + (m_start * this->_ldc) + n0, this->_ldc, (k0 == 0) ? _beta : static_cast(1), (m_end - m_start), (nmax - n0), kmax-k0); } while (p.next_dim1()); } } // Interface implementation - pretransposed bool B_is_pretransposed() const override { return true; } bool B_pretranspose_required() const override { return (_B_transposed==nullptr); } size_t get_B_pretransposed_array_size() const override { return roundup(_Nsize, strategy::out_width()) * roundup(_Ksize, strategy::k_unroll()) * _nmulti * sizeof(Toi); } void pretranspose_B_array(void *in_buffer, const To *B, const int ldb, const int B_multi_stride) override { Toi *buffer = reinterpret_cast(in_buffer); _B_transposed = buffer; strategy strat(_ci); for (unsigned int multi=0; multi<_nmulti; multi++) { for (unsigned int k0=0; k0<_Ksize; k0+=_k_block) { const unsigned int kmax = std::min(k0 + _k_block, _Ksize); const unsigned int k_size = roundup(kmax-k0, strategy::k_unroll()); for (unsigned int x0=0; x0<_Nsize; x0+=_n_block) { const unsigned int xmax = std::min(x0+_n_block, _Nsize); const unsigned int size = roundup(xmax-x0, strategy::out_width()) * k_size; strat.transforms.PrepareB( buffer, B + (multi * B_multi_stride), ldb, x0, xmax, k0, kmax, _trB); buffer += size; } } } } void set_pretransposed_B_data(void *in_buffer) override { _B_transposed = reinterpret_cast(in_buffer); } }; } // namespace arm_gemm