/* * Copyright (c) 2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #pragma once #include #include #include "arm_gemm.hpp" #include "utils.hpp" #include "mergeresults.hpp" #include "transform.hpp" #ifdef CYCLE_PROFILING #include "profiler.hpp" #endif namespace arm_gemm { // Implementation of the GemmCommon abstract class. template class GemmHybrid : public GemmCommon { typedef typename strategy::operand_type Toi; typedef typename strategy::result_type Tri; /* const properties set by constructor */ const CPUInfo * const _ci; const unsigned int _Msize; const unsigned int _Nsize; const unsigned int _Ksize; const unsigned int _nbatches; const unsigned int _nmulti; const bool _trB; const Tr _beta; /* Blocking info */ unsigned int _k_block=0; unsigned int _x_block=0; unsigned int _Mround=0; /* Pretransposed buffer. */ const Toi *_B_transposed=nullptr; unsigned int _B_per_multi = 0; /* We will need to walk through the blocks of B in a few contexts, so * factor that out. */ class blockwalker { private: /* Size loops, etc. based on our parent's configuration */ const GemmHybrid &_parent; /* K, X and multi parameters for current iteration. */ unsigned int _k0=0, _x0=0; unsigned int _index=0; bool _done=false; bool _newkblock=true; public: blockwalker(const GemmHybrid &parent) : _parent(parent) { } unsigned int xmax() { return std::min(_x0 + _parent._x_block, _parent._Nsize); } unsigned int kmax() { return std::min(_k0 + _parent._k_block, _parent._Ksize); } /* Advance to the next block, return false at the end. */ bool advance(void) { if (_done) { return false; } _newkblock=false; _x0 += _parent._x_block; if (_x0 >= _parent._Nsize) { _x0=0; _k0 += _parent._k_block; if (_k0 >= _parent._Ksize) { _done=true; return false; } _newkblock=true; } _index++; return true; } unsigned int k0(void) { return _k0; } unsigned int x0(void) { return _x0; } unsigned int index(void) { return _index; } bool done(void) { return _done; } bool newkblock(void) { return _newkblock; } }; public: GemmHybrid(GemmHybrid &) = delete; GemmHybrid & operator= (GemmHybrid &) = delete; /* Constructor */ GemmHybrid(const GemmArgs &args) : _ci(args._ci), _Msize(args._Msize), _Nsize(args._Nsize), _Ksize(args._Ksize), _nbatches(args._nbatches), _nmulti(args._nmulti), _trB(args._trB), _beta(args._beta) { const unsigned int L1_size = _ci->get_L1_cache_size(); const unsigned int L2_size = _ci->get_L2_cache_size(); _B_per_multi = (iceildiv(_Nsize, strategy::out_width()) * strategy::out_width()) * (iceildiv(_Ksize, strategy::k_unroll()) * strategy::k_unroll()); // Work out blocking parameters, or override from config. if (args._cfg && args._cfg->inner_block_size) { _k_block = args._cfg->inner_block_size; } else { // k_block: Find out how much of the larger array can be loaded into half the cache. // This should account for associative caches. _k_block = (L1_size / 2) / (sizeof(Toi) * (std::max(strategy::out_width(), strategy::out_height()))); // Needs to be (at least a single) multiple of the K unroll level. _k_block /= strategy::k_unroll(); _k_block = std::max(_k_block, 1U) * strategy::k_unroll(); // Now tune to presented problem size; this is how many blocks we need. int num_k_blocks = iceildiv(_Ksize, _k_block); // So divide the space equally into that many blocks. _k_block = iceildiv(_Ksize, num_k_blocks); // And round UP to the K unroll level required. _k_block = iceildiv(_k_block, strategy::k_unroll()); _k_block *= strategy::k_unroll(); } if (args._cfg && args._cfg->outer_block_size) { _x_block = args._cfg->outer_block_size; } else { // x_block: Work out how many rows (of length k_block) will fit in the L2 // Don't allocate more than 90% of the L2 to allow for overheads, and subtract off the L1 contents. _x_block = (((L2_size * 9) / 10) - (_k_block * sizeof(Toi) * (strategy::out_width() + strategy::out_height()))) / (sizeof(Toi) * _k_block); // Needs to be (at least a single) multiple of the kernel output width. _x_block /= strategy::out_width(); _x_block = std::max(_x_block, 1U) * strategy::out_width(); // And tune to the presented problem size. int num_x_blocks = iceildiv(_Nsize, _x_block); _x_block = iceildiv(_Nsize, num_x_blocks); _x_block = iceildiv(_x_block, strategy::out_width()); _x_block *= strategy::out_width(); } // Work out the rounded size of M - needed for some buffers. _Mround = iceildiv(_Msize, strategy::out_height()); _Mround *= strategy::out_height(); } // Interface implementation - Compulsory functions // Window size: Only the last thread should do a ragged block, so dole // out work in units of out_height. Factor batches and multi into the // window too. unsigned int get_window_size() const override { // _Mround is a multiple of out_height by definition. return (_Mround / strategy::out_height()) * _nbatches * _nmulti; } // Execute void execute(unsigned int start, unsigned int end, int threadid) override { #ifdef CYCLE_PROFILING profiler prof; #endif strategy strat(_ci); /* Make sure we've been set up correctly. */ assert(_B_transposed); const unsigned int window_per_batch = iceildiv(_Msize, strategy::out_height()); const unsigned int window_per_multi = window_per_batch * _nbatches; const unsigned int first_multi = start / window_per_multi; const unsigned int last_multi = end / window_per_multi; const unsigned int first_batch = (start - (first_multi * window_per_multi)) / window_per_batch; const unsigned int last_batch = (end - (last_multi * window_per_multi)) / window_per_batch; const unsigned int first_row = ((start - (first_multi * window_per_multi)) % window_per_batch) * strategy::out_height(); const unsigned int last_row = ((end - (last_multi * window_per_multi)) % window_per_batch) * strategy::out_height(); static_assert(std::is_same::value, "gemm_native: Operand types must be the same."); static_assert(std::is_same::value, "gemm_native: Result types must be the same."); for (unsigned int multi = first_multi; multi <= last_multi; multi++) { const unsigned int batch_0 = (multi == first_multi) ? first_batch : 0; const unsigned int batch_max = (multi == last_multi) ? last_batch : (_nbatches - 1); const Toi *b_panel = _B_transposed + (multi * _B_per_multi); for (blockwalker current(*this); !current.done(); current.advance()) { int kern_k = iceildiv(current.kmax() - current.k0(), strategy::k_unroll()); kern_k *= strat.k_unroll(); int bblocks = iceildiv(current.xmax() - current.x0(), strategy::out_width()); for (unsigned int batch = batch_0; batch <= batch_max; batch++) { const unsigned int m_start = ((multi == first_multi) && (batch == first_batch)) ? first_row : 0; const unsigned int m_end = ((multi == last_multi) && (batch == last_batch) ) ? last_row : _Msize; #ifdef CYCLE_PROFILING auto p = prof.ScopedProfiler(PROFILE_KERNEL, (m_end - m_start) * kern_k * bblocks * strategy::out_width()); #endif strat.kernel(this->_Aptr + (multi * this->_A_multi_stride) + (batch * this->_A_batch_stride) + (m_start * this->_lda) + current.k0(), this->_lda, b_panel, this->_Cptr + (multi * this->_C_multi_stride) + (batch * this->_C_batch_stride) + (m_start * this->_ldc) + current.x0(), this->_ldc, (current.k0() == 0) ? _beta : static_cast(1), (m_end - m_start), (current.xmax() - current.x0()), kern_k); } b_panel += (bblocks * strat.out_width() * kern_k); } } } // Interface implementation - pretransposed bool B_is_pretransposed() const override { return true; } bool B_pretranspose_required() const override { return (_B_transposed==nullptr); } size_t get_B_pretransposed_array_size() const override { return _B_per_multi * _nmulti * sizeof(Toi); } void pretranspose_B_array(void *in_buffer, const To *B, const int ldb, const int B_multi_stride) override { Toi *buffer = reinterpret_cast(in_buffer); _B_transposed = buffer; strategy strat(_ci); for (unsigned int multi=0; multi < _nmulti; multi++) { blockwalker current(*this); do { /* Figure out the size of each block. */ size_t x_size = (current.xmax() - current.x0()); size_t k_size = (current.kmax() - current.k0()); /* Round sizes up as needed. */ x_size = iceildiv(x_size, strategy::out_width()); x_size *= strategy::out_width(); k_size = iceildiv(k_size, strategy::k_unroll()); k_size *= strategy::k_unroll(); strat.transforms.PrepareB( buffer, B + (multi * B_multi_stride), ldb, current.x0(), current.xmax(), current.k0(), current.kmax(), _trB); buffer += (x_size * k_size); } while (current.advance()); } } void set_pretransposed_B_data(void *in_buffer) override { _B_transposed = reinterpret_cast(in_buffer); } }; } // namespace arm_gemm