/* * Copyright (c) 2021 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #pragma once #include "depthwise_depthfirst_multiplier.hpp" namespace arm_conv { namespace depthwise { template class DepthwiseDepthfirstWithMultiplierQuantized : public DepthwiseCommon { using Parent = DepthwiseCommon; using TInput = typename strategy::input_type; using TWeight = typename strategy::weight_type; using TOutput = typename strategy::return_type; const arm_gemm::Requantize32 m_qp; size_t sizeof_output_buffer(unsigned int n_channels) const { const unsigned int vl = arm_gemm::utils::get_vector_length(strategy::vl_type); const auto rounded_channels = arm_gemm::roundup(n_channels, vl); return sizeof(typename strategy::return_type) * rounded_channels; } public: DepthwiseDepthfirstWithMultiplierQuantized(const DepthwiseArgs &args, const arm_gemm::Requantize32 &qp) : Parent(args), m_qp(qp) { } DepthwiseDepthfirstWithMultiplierQuantized(DepthwiseDepthfirstWithMultiplierQuantized &) = delete; DepthwiseDepthfirstWithMultiplierQuantized &operator=(DepthwiseDepthfirstWithMultiplierQuantized &) = delete; size_t get_storage_size(void) const override { // We produce VL channels at a time, for each of these blocks of // channels we store a vector of biases, weights (complicated) and // requantize parameters. const unsigned int iter_length = arm_gemm::utils::get_vector_length(strategy::vl_type); const unsigned int n_iters = this->m_args.input_channels * arm_gemm::iceildiv(this->m_args.channel_multiplier, iter_length); // Compute the cost of storing the weights const unsigned int n_dots_per_kernel_row = arm_gemm::iceildiv(strategy::kernel_cols, 4u); return n_iters * iter_length * ( sizeof(int32_t) + // Bias 4 * n_dots_per_kernel_row * strategy::kernel_rows * sizeof(TWeight) + // Weights 2 * sizeof(int32_t) // Requantisation parameters ); } // We'll want an optimised version of this, but for now a C++ implementation // is probably sufficient. void pack_parameters(void *_buffer, const void *_biases, const void *_weights, size_t ld_weight_col, size_t ld_weight_row) override { auto buffer = static_cast(_buffer); auto biases = static_cast(_biases); auto weights = static_cast(_weights); auto requant_muls = m_qp.per_channel_muls; auto requant_shifts = m_qp.per_channel_right_shifts; const unsigned int iter_length = arm_gemm::utils::get_vector_length(strategy::vl_type); const unsigned int n_iters_per_input_channel = arm_gemm::iceildiv(this->m_args.channel_multiplier, iter_length); const unsigned int n_dots_per_kernel_row = arm_gemm::iceildiv(strategy::kernel_cols, 4u); const size_t iter_stride = iter_length * ( sizeof(int32_t) + // Bias 4 * n_dots_per_kernel_row * strategy::kernel_rows * sizeof(int8_t) + // Weights 2 * sizeof(int32_t) // Requantisation parameters ); ld_weight_col = (ld_weight_col == 0) ? this->m_args.input_channels * this->m_args.channel_multiplier : ld_weight_col; ld_weight_row = (ld_weight_row == 0) ? this->m_args.kernel_cols * ld_weight_col : ld_weight_row; for (unsigned int input_channel = 0; input_channel < this->m_args.input_channels; input_channel++) { auto buffer_input_channel = buffer + input_channel * n_iters_per_input_channel * iter_stride; auto weights_input_channel = weights + input_channel * this->m_args.channel_multiplier; for (unsigned int iter = 0; iter < n_iters_per_input_channel; iter++) { // Get a pointer to the start of this portion of the buffer; consequently // derive pointers to the bias, weight and requantisation portions of // this frame. auto buffer_base = buffer_input_channel + iter_stride * iter; auto buffer_biases = reinterpret_cast(buffer_base); auto buffer_weights = buffer_base + sizeof(int32_t) * iter_length; auto buffer_requant_mul = reinterpret_cast( buffer_weights + strategy::kernel_rows * n_dots_per_kernel_row * 4 * iter_length); auto buffer_requant_shift = buffer_requant_mul + iter_length; auto weights_base = weights_input_channel + iter * iter_length; // Hence work through the data for this iteration, on a // channel-by-channel basis. const auto this_iter_length = std::min( iter_length, this->m_args.channel_multiplier - iter * iter_length ); for (unsigned int i = 0; i < this_iter_length; i++) { auto weights_channel = weights_base + i; // Read the bias value, we modify this as we read the weights. auto bias_value = biases == nullptr ? 0 : *(biases++); int32_t elements_sum = 0; // Read through the kernel; for each row, marshal together as many dot // product terms as are required. for (unsigned int ki = 0; ki < strategy::kernel_rows; ki++) { auto buffer_row = buffer_weights + i*4 + ki * 4 * n_dots_per_kernel_row * iter_length; auto weights_row = weights_channel + ki * ld_weight_row; unsigned int kj = 0; for (; kj < strategy::kernel_cols; kj++) { // Determine which element to which we're writing const auto dot = kj / 4; const auto elem = kj % 4; // Copy the value; include in the sum const auto val = weights_row[kj * ld_weight_col]; buffer_row[dot * 4 * iter_length + elem] = val; elements_sum += val; } for (; kj < 4 * n_dots_per_kernel_row; kj++) { const auto dot = kj / 4; const auto elem = kj % 4; buffer_row[dot * 4 * iter_length + elem] = 0; } buffer_row += 4 * n_dots_per_kernel_row * iter_length; } // Write back the bias and offset values *(buffer_biases++) = bias_value - m_qp.a_offset * elements_sum + strategy::kernel_rows * strategy::kernel_cols * m_qp.a_offset * m_qp.b_offset; // Write out the requantisation parameters *(buffer_requant_mul++) = m_qp.per_channel_requant ? *(requant_muls++) : m_qp.per_layer_mul; *(buffer_requant_shift++) = m_qp.per_channel_requant ? *(requant_shifts++) : m_qp.per_layer_right_shift; } } } } size_t get_working_size(const unsigned int n_threads, const unsigned int n_channels) const override { const unsigned int n_output_channels = n_channels * this->m_args.channel_multiplier; return n_threads * sizeof_output_buffer(n_output_channels); } using Parent::execute; void execute( const unsigned int batches, const unsigned int input_height, const unsigned int input_width, const unsigned int input_channels, const PaddingValues &padding, const void *const _input, const size_t ld_input_col, const size_t ld_input_row, const size_t ld_input_batch, const void *const parameters, const unsigned int output_height, const unsigned int output_width, void *const _output, const size_t ld_output_col, const size_t ld_output_row, const size_t ld_output_batch, void *const _working_space, const unsigned int thread_id, const unsigned int n_threads ) const override { strategy strat(this->m_args.cpu_info); #ifdef CYCLE_PROFILING arm_gemm::profiler prof; #endif auto executefn = [strat, this] ( const TInput *const *const inptrs, TOutput *const *const outptr_array, const void *const params ) { strat.kernel(inptrs, outptr_array, params, this->m_args.channel_multiplier, m_qp); }; // Get working space for this thread uint8_t *const working_space = static_cast(_working_space) + get_working_size(1, input_channels) * thread_id; // Determine the stride across blocks of parameters const unsigned int iter_length = arm_gemm::utils::get_vector_length(strategy::vl_type); const unsigned int n_iters_per_input_channel = arm_gemm::iceildiv(this->m_args.channel_multiplier, iter_length); const unsigned int n_dots_per_kernel_row = arm_gemm::iceildiv(strategy::kernel_cols, 4u); const size_t param_stride = n_iters_per_input_channel * iter_length * ( sizeof(int32_t) + // Bias 4 * n_dots_per_kernel_row * strategy::kernel_rows * sizeof(int8_t) + // Weights 2 * sizeof(int32_t) // Requantisation parameters ); common::depthwise_multiplier_execute( executefn, m_qp.a_offset, this->m_args, batches, input_height, input_width, input_channels, padding, _input, ld_input_col, ld_input_row, ld_input_batch, parameters, param_stride, output_height, output_width, _output, ld_output_col, ld_output_row, ld_output_batch, working_space, thread_id, n_threads ); } }; } // namespace depthwise } // namespace arm_conv