/* * Copyright (c) 2018-2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/NEON/kernels/NEUpsampleLayerKernel.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/ITensor.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/Window.h" #include "arm_compute/core/utils/misc/ShapeCalculator.h" #include namespace arm_compute { namespace { std::pair validate_and_configure_window_nchw(ITensorInfo *input, ITensorInfo *output, int num_elems_processed_per_iteration_x, const Size2D &info) { const int num_elems_processed_per_iteration_x_out = num_elems_processed_per_iteration_x * info.x(); Window win = calculate_max_window(*output, Steps(num_elems_processed_per_iteration_x_out)); AccessWindowRectangle input_access(input, 0, 0, num_elems_processed_per_iteration_x, 1, 0.5f, 0.5f); AccessWindowHorizontal output_access(output, 0, num_elems_processed_per_iteration_x_out); bool window_changed = update_window_and_padding(win, input_access, output_access); output_access.set_valid_region(win, output->valid_region()); Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{}; return std::make_pair(err, win); } std::pair validate_and_configure_window_nhwc(ITensorInfo *input, ITensorInfo *output, int num_elems_processed_per_iteration_x, const Size2D &info) { ARM_COMPUTE_UNUSED(info); Window win = calculate_max_window(*output, Steps(num_elems_processed_per_iteration_x)); AccessWindowHorizontal input_access(input, 0, num_elems_processed_per_iteration_x); AccessWindowHorizontal output_access(output, 0, num_elems_processed_per_iteration_x); bool window_changed = update_window_and_padding(win, input_access, output_access); output_access.set_valid_region(win, output->valid_region()); Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{}; return std::make_pair(err, win); } std::pair validate_and_configure_window(ITensorInfo *input, ITensorInfo *output, int num_elems_processed_per_iteration_x, const Size2D &info) { std::pair win_config; switch(input->data_layout()) { case DataLayout::NCHW: win_config = validate_and_configure_window_nchw(input, output, num_elems_processed_per_iteration_x, info); break; case DataLayout::NHWC: win_config = validate_and_configure_window_nhwc(input, output, num_elems_processed_per_iteration_x, info); break; default: win_config = std::make_pair(ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Unsupported data layout!"), Window{}); } return win_config; } } // namespace NEUpsampleLayerKernel::NEUpsampleLayerKernel() : _func(nullptr), _input(nullptr), _output(nullptr), _info(), _num_elems_processed_per_iteration_x() { } Status NEUpsampleLayerKernel::validate(const ITensorInfo *input, const ITensorInfo *output, const Size2D &info, const InterpolationPolicy policy) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, output); ARM_COMPUTE_UNUSED(policy); const DataLayout data_layout = input->data_layout(); const int idx_width = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH); const int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::F16, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON_MSG(info.x() != 2 || info.y() != 2, "Only stride 2 is supported"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(policy != InterpolationPolicy::NEAREST_NEIGHBOR, "Only nearest neighbor policy supported"); // Check output if configured if(output->total_size() != 0) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(input, output); ARM_COMPUTE_RETURN_ERROR_ON(output->dimension(idx_width) != info.x() * input->dimension(idx_width)); ARM_COMPUTE_RETURN_ERROR_ON(output->dimension(idx_height) != info.y() * input->dimension(idx_height)); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_QUANTIZATION_INFO(input, output); } const int num_elems_processed_per_iteration_x = 16 / input->element_size(); ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input->clone().get(), output->clone().get(), num_elems_processed_per_iteration_x, info) .first); return Status{}; } void NEUpsampleLayerKernel::upsample_f32_nchw(const arm_compute::Window &window) { Window window_in(window); window_in.set(Window::DimX, Window::Dimension(0, _input->info()->dimension(0), _num_elems_processed_per_iteration_x)); Window window_out(window); window_out.set(Window::DimY, Window::Dimension(0, _output->info()->dimension(1), _info.y())); Iterator input(_input, window_in); Iterator output(_output, window_out); const int offset_y_out = _output->info()->strides_in_bytes().y() / sizeof(float); execute_window_loop(window_out, [&](const Coordinates & id) { const float32x4_t data = vld1q_f32(reinterpret_cast(input.ptr())); const float32x4_t data_out1 = { vgetq_lane_f32(data, 0), vgetq_lane_f32(data, 0), vgetq_lane_f32(data, 1), vgetq_lane_f32(data, 1) }; const float32x4_t data_out2 = { vgetq_lane_f32(data, 2), vgetq_lane_f32(data, 2), vgetq_lane_f32(data, 3), vgetq_lane_f32(data, 3) }; auto out = reinterpret_cast(output.ptr()); vst1q_f32(out, data_out1); vst1q_f32(out + 4, data_out2); vst1q_f32(out + offset_y_out, data_out1); vst1q_f32(out + offset_y_out + 4, data_out2); }, input, output); } void NEUpsampleLayerKernel::upsample_f32_nhwc(const arm_compute::Window &window) { Window window_out(window); window_out.set(Window::DimY, Window::Dimension(0, _output->info()->dimension(1), _info.x())); window_out.set(Window::DimZ, Window::Dimension(0, _output->info()->dimension(2), _info.y())); Iterator input(_input, window); Iterator output(_output, window_out); const int offset_y_out = _output->info()->strides_in_bytes().y() / sizeof(float); const int offset_z_out = _output->info()->strides_in_bytes().z() / sizeof(float); execute_window_loop(window_out, [&](const Coordinates & id) { const float32x4_t data = vld1q_f32(reinterpret_cast(input.ptr())); auto out = reinterpret_cast(output.ptr()); vst1q_f32(out, data); vst1q_f32(out + offset_y_out, data); vst1q_f32(out + offset_z_out, data); vst1q_f32(out + offset_y_out + offset_z_out, data); }, input, output); } void NEUpsampleLayerKernel::upsample_qasymm8_nchw(const arm_compute::Window &window) { Window window_in(window); window_in.set(Window::DimX, Window::Dimension(0, _input->info()->dimension(0), _num_elems_processed_per_iteration_x)); Window window_out(window); window_out.set(Window::DimY, Window::Dimension(0, _output->info()->dimension(1), _info.y())); Iterator input(_input, window_in); Iterator output(_output, window_out); const int offset_y_out = _output->info()->strides_in_bytes().y() / sizeof(uint8_t); execute_window_loop(window_out, [&](const Coordinates & id) { const uint8x16_t data = vld1q_u8(reinterpret_cast(input.ptr())); const uint8x16_t data_out1 = { vgetq_lane_u8(data, 0), vgetq_lane_u8(data, 0), vgetq_lane_u8(data, 1), vgetq_lane_u8(data, 1), vgetq_lane_u8(data, 2), vgetq_lane_u8(data, 2), vgetq_lane_u8(data, 3), vgetq_lane_u8(data, 3), vgetq_lane_u8(data, 4), vgetq_lane_u8(data, 4), vgetq_lane_u8(data, 5), vgetq_lane_u8(data, 5), vgetq_lane_u8(data, 6), vgetq_lane_u8(data, 6), vgetq_lane_u8(data, 7), vgetq_lane_u8(data, 7) }; const uint8x16_t data_out2 = { vgetq_lane_u8(data, 8), vgetq_lane_u8(data, 8), vgetq_lane_u8(data, 9), vgetq_lane_u8(data, 9), vgetq_lane_u8(data, 10), vgetq_lane_u8(data, 10), vgetq_lane_u8(data, 11), vgetq_lane_u8(data, 11), vgetq_lane_u8(data, 12), vgetq_lane_u8(data, 12), vgetq_lane_u8(data, 13), vgetq_lane_u8(data, 13), vgetq_lane_u8(data, 14), vgetq_lane_u8(data, 14), vgetq_lane_u8(data, 15), vgetq_lane_u8(data, 15) }; auto out = reinterpret_cast(output.ptr()); vst1q_u8(out, data_out1); vst1q_u8(out + 16, data_out2); vst1q_u8(out + offset_y_out, data_out1); vst1q_u8(out + offset_y_out + 16, data_out2); }, input, output); } void NEUpsampleLayerKernel::upsample_qasymm8_nhwc(const arm_compute::Window &window) { Window window_out(window); window_out.set(Window::DimY, Window::Dimension(0, _output->info()->dimension(1), _info.x())); window_out.set(Window::DimZ, Window::Dimension(0, _output->info()->dimension(2), _info.y())); Iterator input(_input, window); Iterator output(_output, window_out); const int offset_y_out = _output->info()->strides_in_bytes().y() / sizeof(uint8_t); const int offset_z_out = _output->info()->strides_in_bytes().z() / sizeof(uint8_t); execute_window_loop(window_out, [&](const Coordinates & id) { const uint8x16_t data = vld1q_u8(reinterpret_cast(input.ptr())); auto out = reinterpret_cast(output.ptr()); vst1q_u8(out, data); vst1q_u8(out + offset_y_out, data); vst1q_u8(out + offset_z_out, data); vst1q_u8(out + offset_y_out + offset_z_out, data); }, input, output); } void NEUpsampleLayerKernel::upsample_f16_nchw(const arm_compute::Window &window) { ARM_COMPUTE_UNUSED(window); #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC Window window_in(window); window_in.set(Window::DimX, Window::Dimension(0, _input->info()->dimension(0), _num_elems_processed_per_iteration_x)); Window window_out(window); window_out.set(Window::DimY, Window::Dimension(0, _output->info()->dimension(1), _info.y())); Iterator input(_input, window_in); Iterator output(_output, window_out); const int offset_y_out = _output->info()->strides_in_bytes().y() / sizeof(float16_t); execute_window_loop(window_out, [&](const Coordinates & id) { const float16x8_t data = vld1q_f16(reinterpret_cast(input.ptr())); const float16x8_t data_out1 = { vgetq_lane_f16(data, 0), vgetq_lane_f16(data, 0), vgetq_lane_f16(data, 1), vgetq_lane_f16(data, 1), vgetq_lane_f16(data, 2), vgetq_lane_f16(data, 2), vgetq_lane_f16(data, 3), vgetq_lane_f16(data, 3) }; const float16x8_t data_out2 = { vgetq_lane_f16(data, 4), vgetq_lane_f16(data, 4), vgetq_lane_f16(data, 5), vgetq_lane_f16(data, 5), vgetq_lane_f16(data, 6), vgetq_lane_f16(data, 6), vgetq_lane_f16(data, 7), vgetq_lane_f16(data, 7) }; auto out = reinterpret_cast(output.ptr()); vst1q_f16(out, data_out1); vst1q_f16(out + 8, data_out2); vst1q_f16(out + offset_y_out, data_out1); vst1q_f16(out + offset_y_out + 8, data_out2); }, input, output); #endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC } void NEUpsampleLayerKernel::upsample_f16_nhwc(const arm_compute::Window &window) { ARM_COMPUTE_UNUSED(window); #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC Window window_out(window); window_out.set(Window::DimY, Window::Dimension(0, _output->info()->dimension(1), _info.x())); window_out.set(Window::DimZ, Window::Dimension(0, _output->info()->dimension(2), _info.y())); Iterator input(_input, window); Iterator output(_output, window_out); const int offset_y_out = _output->info()->strides_in_bytes().y() / sizeof(float16_t); const int offset_z_out = _output->info()->strides_in_bytes().z() / sizeof(float16_t); execute_window_loop(window_out, [&](const Coordinates & id) { const float16x8_t data = vld1q_f16(reinterpret_cast(input.ptr())); auto out = reinterpret_cast(output.ptr()); vst1q_f16(out, data); vst1q_f16(out + offset_y_out, data); vst1q_f16(out + offset_z_out, data); vst1q_f16(out + offset_y_out + offset_z_out, data); }, input, output); #endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC } void NEUpsampleLayerKernel::configure(const ITensor *input, ITensor *output, const Size2D &info, const InterpolationPolicy policy) { ARM_COMPUTE_ERROR_ON_NULLPTR(input, output); ARM_COMPUTE_UNUSED(policy); _input = input; _output = output; _info = info; const DataLayout data_layout = input->info()->data_layout(); TensorShape output_shape = misc::shape_calculator::compute_upsample_shape(*input->info(), info); auto_init_if_empty(*output->info(), output_shape, 1, input->info()->data_type()); output->info()->set_data_layout(data_layout); // Perform validation step ARM_COMPUTE_ERROR_THROW_ON(NEUpsampleLayerKernel::validate(input->info(), output->info(), info, policy)); _num_elems_processed_per_iteration_x = 16 / output->info()->element_size(); switch(data_layout) { case DataLayout::NCHW: { switch(input->info()->data_type()) { case DataType::QASYMM8: _func = &NEUpsampleLayerKernel::upsample_qasymm8_nchw; break; case DataType::F32: _func = &NEUpsampleLayerKernel::upsample_f32_nchw; break; #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC case DataType::F16: _func = &NEUpsampleLayerKernel::upsample_f16_nchw; break; #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */ default: ARM_COMPUTE_ERROR("Not implemented"); } break; } case DataLayout::NHWC: { switch(input->info()->data_type()) { case DataType::QASYMM8: _func = &NEUpsampleLayerKernel::upsample_qasymm8_nhwc; break; case DataType::F32: _func = &NEUpsampleLayerKernel::upsample_f32_nhwc; break; #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC case DataType::F16: _func = &NEUpsampleLayerKernel::upsample_f16_nhwc; break; #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */ default: ARM_COMPUTE_ERROR("Not implemented"); } break; } default: ARM_COMPUTE_ERROR("Not implemented"); } // Configure window std::pair win_config = validate_and_configure_window(input->info(), output->info(), _num_elems_processed_per_iteration_x, info); ARM_COMPUTE_ERROR_THROW_ON(win_config.first); INEKernel::configure(win_config.second); } void NEUpsampleLayerKernel::run(const Window &window, const ThreadInfo &info) { ARM_COMPUTE_UNUSED(info); ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window); ARM_COMPUTE_ERROR_ON(_func == nullptr); (this->*_func)(window); } } // namespace arm_compute