/* * Copyright (c) 2017-2018 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/NEON/kernels/NETransposeKernel.h" #include "arm_compute/core/AccessWindowStatic.h" #include "arm_compute/core/AccessWindowTranspose.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/ITensor.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/Utils.h" #include "arm_compute/core/Validate.h" #include using namespace arm_compute; namespace arm_compute { class Coordinates; } // namespace arm_compute namespace { TensorShape transposed_tensor_shape(const TensorShape &in) { TensorShape output_shape{ in }; const size_t w_out = in[1]; const size_t h_out = in[0]; output_shape.set(0, w_out); output_shape.set(1, h_out); return output_shape; } unsigned int num_elems_processed(size_t element_size) { switch(element_size) { case 1: return 8; break; case 2: return 4; break; case 4: return 4; break; default: ARM_COMPUTE_ERROR("Element size not supported"); break; } } Status validate_arguments(const ITensorInfo *input, const ITensorInfo *output) { //Note: ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input) is not needed here as this kernel doesn't use NEON FP16 instructions. ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::U8, DataType::S8, DataType::QASYMM8, DataType::U16, DataType::S16, DataType::U32, DataType::S32, DataType::F16, DataType::F32); if(output->total_size() != 0) { const TensorInfo tensor_info = input->clone()->set_tensor_shape(transposed_tensor_shape(input->tensor_shape())); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(output, &tensor_info); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output); } return Status{}; } std::pair validate_and_configure_window(ITensorInfo *input, ITensorInfo *output) { // Note: This kernel performs 16 elements per iteration. // However, since we use a left-over for loop on both dimensions (X and Y), we cannot have any read or write out of memory // For this reason num_elems_processed_per_iteration_x is set to 1 const unsigned int num_elems_processed_per_iteration_x = 1; const unsigned int num_elems_processed_per_iteration_y = num_elems_processed(input->element_size()); // Configure kernel window Window win = calculate_max_window(*input, Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y)); AccessWindowRectangle input_access(input, 0, 0, num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y); bool window_changed = update_window_and_padding(win, input_access); if(output->total_size() != 0) { AccessWindowTranspose output_access(output, 0, 0, num_elems_processed_per_iteration_y, num_elems_processed_per_iteration_x); window_changed = window_changed || update_window_and_padding(win, output_access); output_access.set_valid_region(win, ValidRegion(Coordinates(), output->tensor_shape())); } Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{}; return std::make_pair(err, win); } void transpose_8bit_elements(const ITensor *in, ITensor *out, const Window &window) { const int window_step_x = 8; const int window_step_y = 8; const int window_start_x = window.x().start(); const int window_end_x = window.x().end(); const int window_start_y = window.y().start(); const int window_end_y = std::min(window.y().end(), static_cast(in->info()->dimension(1))); const int window_end_y_multiple_of = ((window_end_y - window_start_y) / window_step_y) * window_step_y; const size_t input_stride_in_bytes = in->info()->strides_in_bytes()[1]; const size_t output_stride_in_bytes = out->info()->strides_in_bytes()[1]; // Check if we need a left-over loop for the y dimension bool left_over_loop_y = (((window_end_y - window_start_y) % window_step_y) != 0); Window window_in(window); window_in.set(Window::DimX, Window::Dimension(0, 1, 1)); if(left_over_loop_y) { // Check if window_end_y_multiple_of is greater than window_start_y if(window_end_y_multiple_of > window_start_y) { window_in.set(Window::DimY, Window::Dimension(window_start_y, window_end_y_multiple_of, window_step_y)); } else { window_in.set(Window::DimY, Window::Dimension(0, 0, 1)); } } Window window_out(window); window_out.set(Window::DimX, Window::Dimension(0, 0, 0)); window_out.set(Window::DimY, Window::Dimension(0, 0, 0)); Iterator output(out, window_out); // Run the NEON path if and only if the input is not a row-vector if(in->info()->dimension(1) != 1) { Iterator input(in, window_in); execute_window_loop(window_in, [&](const Coordinates & id) { // Compute 8x8 elements per iteration int x = window_start_x; for(; x <= (window_end_x - window_step_x); x += window_step_x) { const uint8x8_t row0 = vld1_u8(reinterpret_cast(input.ptr() + x + 0 * input_stride_in_bytes)); const uint8x8_t row1 = vld1_u8(reinterpret_cast(input.ptr() + x + 1 * input_stride_in_bytes)); const uint8x8_t row2 = vld1_u8(reinterpret_cast(input.ptr() + x + 2 * input_stride_in_bytes)); const uint8x8_t row3 = vld1_u8(reinterpret_cast(input.ptr() + x + 3 * input_stride_in_bytes)); const uint8x8_t row4 = vld1_u8(reinterpret_cast(input.ptr() + x + 4 * input_stride_in_bytes)); const uint8x8_t row5 = vld1_u8(reinterpret_cast(input.ptr() + x + 5 * input_stride_in_bytes)); const uint8x8_t row6 = vld1_u8(reinterpret_cast(input.ptr() + x + 6 * input_stride_in_bytes)); const uint8x8_t row7 = vld1_u8(reinterpret_cast(input.ptr() + x + 7 * input_stride_in_bytes)); // Transpose 2x2 const uint8x8x2_t k0_u8 = vtrn_u8(row0, row1); const uint8x8x2_t k1_u8 = vtrn_u8(row2, row3); const uint8x8x2_t k2_u8 = vtrn_u8(row4, row5); const uint8x8x2_t k3_u8 = vtrn_u8(row6, row7); // Transpose 4x4 const uint16x4x2_t k0_u16 = vtrn_u16(vreinterpret_u16_u8(k0_u8.val[0]), vreinterpret_u16_u8(k1_u8.val[0])); const uint16x4x2_t k1_u16 = vtrn_u16(vreinterpret_u16_u8(k0_u8.val[1]), vreinterpret_u16_u8(k1_u8.val[1])); const uint16x4x2_t k2_u16 = vtrn_u16(vreinterpret_u16_u8(k2_u8.val[0]), vreinterpret_u16_u8(k3_u8.val[0])); const uint16x4x2_t k3_u16 = vtrn_u16(vreinterpret_u16_u8(k2_u8.val[1]), vreinterpret_u16_u8(k3_u8.val[1])); // Transpose 8x8 const uint32x2x2_t k0_u32 = vtrn_u32(vreinterpret_u32_u16(k0_u16.val[0]), vreinterpret_u32_u16(k2_u16.val[0])); const uint32x2x2_t k1_u32 = vtrn_u32(vreinterpret_u32_u16(k0_u16.val[1]), vreinterpret_u32_u16(k2_u16.val[1])); const uint32x2x2_t k2_u32 = vtrn_u32(vreinterpret_u32_u16(k1_u16.val[0]), vreinterpret_u32_u16(k3_u16.val[0])); const uint32x2x2_t k3_u32 = vtrn_u32(vreinterpret_u32_u16(k1_u16.val[1]), vreinterpret_u32_u16(k3_u16.val[1])); // Compute destination address const size_t dst_offset_in_bytes = id.y() * sizeof(uint8_t) + x * output_stride_in_bytes; vst1_u8(reinterpret_cast(output.ptr() + dst_offset_in_bytes + 0 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k0_u32.val[0]))); vst1_u8(reinterpret_cast(output.ptr() + dst_offset_in_bytes + 1 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k2_u32.val[0]))); vst1_u8(reinterpret_cast(output.ptr() + dst_offset_in_bytes + 2 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k1_u32.val[0]))); vst1_u8(reinterpret_cast(output.ptr() + dst_offset_in_bytes + 3 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k3_u32.val[0]))); vst1_u8(reinterpret_cast(output.ptr() + dst_offset_in_bytes + 4 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k0_u32.val[1]))); vst1_u8(reinterpret_cast(output.ptr() + dst_offset_in_bytes + 5 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k2_u32.val[1]))); vst1_u8(reinterpret_cast(output.ptr() + dst_offset_in_bytes + 6 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k1_u32.val[1]))); vst1_u8(reinterpret_cast(output.ptr() + dst_offset_in_bytes + 7 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k3_u32.val[1]))); } // Compute left-over elements along the x dimension (1x8) for(; x < window_end_x; ++x) { const uint8_t val0 = *(input.ptr() + x + 0 * input_stride_in_bytes); const uint8_t val1 = *(input.ptr() + x + 1 * input_stride_in_bytes); const uint8_t val2 = *(input.ptr() + x + 2 * input_stride_in_bytes); const uint8_t val3 = *(input.ptr() + x + 3 * input_stride_in_bytes); const uint8_t val4 = *(input.ptr() + x + 4 * input_stride_in_bytes); const uint8_t val5 = *(input.ptr() + x + 5 * input_stride_in_bytes); const uint8_t val6 = *(input.ptr() + x + 6 * input_stride_in_bytes); const uint8_t val7 = *(input.ptr() + x + 7 * input_stride_in_bytes); uint8x8_t result = vdup_n_u8(0); result = vset_lane_u8(val0, result, 0); result = vset_lane_u8(val1, result, 1); result = vset_lane_u8(val2, result, 2); result = vset_lane_u8(val3, result, 3); result = vset_lane_u8(val4, result, 4); result = vset_lane_u8(val5, result, 5); result = vset_lane_u8(val6, result, 6); result = vset_lane_u8(val7, result, 7); // Compute destination address const size_t dst_offset_in_bytes = id.y() * sizeof(uint8_t) + x * output_stride_in_bytes; vst1_u8(output.ptr() + dst_offset_in_bytes, result); } }, input, output); } if(left_over_loop_y) { window_in.set(Window::DimX, Window::Dimension(window.x().start(), window.x().end(), 1)); window_in.set(Window::DimY, Window::Dimension(window_end_y_multiple_of, window_end_y, 1)); Iterator input(in, window_in); Iterator output(out, window_out); // Compute left-over elements along the y dimension (1x1) execute_window_loop(window_in, [&](const Coordinates & id) { const uint8_t val0 = *input.ptr(); // Compute destination address const size_t dst_offset_in_bytes = id.y() * sizeof(uint8_t) + id.x() * output_stride_in_bytes; *(output.ptr() + dst_offset_in_bytes) = val0; }, input, output); } } void transpose_16bit_elements(const ITensor *in, ITensor *out, const Window &window) { const int window_step_x = 4; const int window_step_y = 4; const int window_start_x = window.x().start(); const int window_end_x = window.x().end(); const int window_start_y = window.y().start(); const int window_end_y = std::min(window.y().end(), static_cast(in->info()->dimension(1))); const int window_end_y_multiple_of = ((window_end_y - window_start_y) / window_step_y) * window_step_y; const size_t input_stride_in_bytes = in->info()->strides_in_bytes()[1]; const size_t output_stride_in_bytes = out->info()->strides_in_bytes()[1]; // Check if we need a left-over loop for the y dimension bool left_over_loop_y = (((window_end_y - window_start_y) % window_step_y) != 0); Window window_in(window); window_in.set(Window::DimX, Window::Dimension(0, 1, 1)); if(left_over_loop_y) { // Check if window_end_y_multiple_of is greater than window_start_y if(window_end_y_multiple_of > window_start_y) { window_in.set(Window::DimY, Window::Dimension(window_start_y, window_end_y_multiple_of, window_step_y)); } else { window_in.set(Window::DimY, Window::Dimension(0, 0, 1)); } } Window window_out(window); window_out.set(Window::DimX, Window::Dimension(0, 0, 0)); window_out.set(Window::DimY, Window::Dimension(0, 0, 0)); Iterator output(out, window_out); // Run the NEON path if and only if the input is not a row-vector if(in->info()->dimension(1) != 1) { Iterator input(in, window_in); execute_window_loop(window_in, [&](const Coordinates & id) { // Compute 4x4 elements per iteration int x = window_start_x; for(; x <= (window_end_x - window_step_x); x += window_step_x) { const uint16x4_t row0 = vld1_u16(reinterpret_cast(input.ptr() + 0 * input_stride_in_bytes) + x); const uint16x4_t row1 = vld1_u16(reinterpret_cast(input.ptr() + 1 * input_stride_in_bytes) + x); const uint16x4_t row2 = vld1_u16(reinterpret_cast(input.ptr() + 2 * input_stride_in_bytes) + x); const uint16x4_t row3 = vld1_u16(reinterpret_cast(input.ptr() + 3 * input_stride_in_bytes) + x); // Transpose 2x2 const uint16x4x2_t k0_u16 = vtrn_u16(row0, row1); const uint16x4x2_t k1_u16 = vtrn_u16(row2, row3); // Transpose 4x4 const uint32x2x2_t k0_u32 = vtrn_u32(vreinterpret_u32_u16(k0_u16.val[0]), vreinterpret_u32_u16(k1_u16.val[0])); const uint32x2x2_t k1_u32 = vtrn_u32(vreinterpret_u32_u16(k0_u16.val[1]), vreinterpret_u32_u16(k1_u16.val[1])); // Compute destination address const size_t dst_offset_in_bytes = id.y() * sizeof(uint16_t) + x * output_stride_in_bytes; vst1_u16(reinterpret_cast(output.ptr() + dst_offset_in_bytes + 0 * output_stride_in_bytes), vreinterpret_u16_u32(k0_u32.val[0])); vst1_u16(reinterpret_cast(output.ptr() + dst_offset_in_bytes + 1 * output_stride_in_bytes), vreinterpret_u16_u32(k1_u32.val[0])); vst1_u16(reinterpret_cast(output.ptr() + dst_offset_in_bytes + 2 * output_stride_in_bytes), vreinterpret_u16_u32(k0_u32.val[1])); vst1_u16(reinterpret_cast(output.ptr() + dst_offset_in_bytes + 3 * output_stride_in_bytes), vreinterpret_u16_u32(k1_u32.val[1])); } // Compute left-over elements (1x4) for(; x < window_end_x; ++x) { const uint16_t val0 = *(reinterpret_cast(input.ptr() + 0 * input_stride_in_bytes) + x); const uint16_t val1 = *(reinterpret_cast(input.ptr() + 1 * input_stride_in_bytes) + x); const uint16_t val2 = *(reinterpret_cast(input.ptr() + 2 * input_stride_in_bytes) + x); const uint16_t val3 = *(reinterpret_cast(input.ptr() + 3 * input_stride_in_bytes) + x); uint16x4_t result = vdup_n_u16(0); result = vset_lane_u16(val0, result, 0); result = vset_lane_u16(val1, result, 1); result = vset_lane_u16(val2, result, 2); result = vset_lane_u16(val3, result, 3); // Compute destination address const size_t dst_offset_in_bytes = id.y() * sizeof(uint16_t) + x * output_stride_in_bytes; vst1_u16(reinterpret_cast(output.ptr() + dst_offset_in_bytes), result); } }, input, output); } if(left_over_loop_y) { window_in.set(Window::DimX, Window::Dimension(window.x().start(), window.x().end(), 1)); window_in.set(Window::DimY, Window::Dimension(window_end_y_multiple_of, window_end_y, 1)); Iterator input(in, window_in); Iterator output(out, window_out); // Compute left-over elements along the y dimension (1x1) execute_window_loop(window_in, [&](const Coordinates & id) { const uint16_t val0 = *(reinterpret_cast(input.ptr())); // Compute destination address const size_t dst_offset_in_bytes = id.y() * sizeof(uint16_t) + id.x() * output_stride_in_bytes; *(reinterpret_cast(output.ptr() + dst_offset_in_bytes)) = val0; }, input, output); } } void transpose_32bit_elements(const ITensor *in, ITensor *out, const Window &window) { const int window_step_x = 4; const int window_step_y = 4; const int window_start_x = window.x().start(); const int window_end_x = window.x().end(); const int window_start_y = window.y().start(); const int window_end_y = std::min(window.y().end(), static_cast(in->info()->dimension(1))); const int window_end_y_multiple_of = ((window_end_y - window_start_y) / window_step_y) * window_step_y; const size_t input_stride_in_bytes = in->info()->strides_in_bytes()[1]; const size_t output_stride_in_bytes = out->info()->strides_in_bytes()[1]; // Check if we need a left-over loop for the y dimension bool left_over_loop_y = (((window_end_y - window_start_y) % window_step_y) != 0); Window window_in(window); window_in.set(Window::DimX, Window::Dimension(0, 1, 1)); if(left_over_loop_y) { // Check if window_end_y_multiple_of is greater than window_start_y if(window_end_y_multiple_of > window_start_y) { window_in.set(Window::DimY, Window::Dimension(window_start_y, window_end_y_multiple_of, window_step_y)); } else { window_in.set(Window::DimY, Window::Dimension(0, 0, 1)); } } Window window_out(window); window_out.set(Window::DimX, Window::Dimension(0, 0, 0)); window_out.set(Window::DimY, Window::Dimension(0, 0, 0)); Iterator output(out, window_out); // Run the NEON path if and only if the input is not a row-vector if(in->info()->dimension(1) != 1) { Iterator input(in, window_in); execute_window_loop(window_in, [&](const Coordinates & id) { // Compute 4x4 elements per iteration int x = window_start_x; for(; x <= (window_end_x - window_step_x); x += window_step_x) { const uint32x4_t row0 = vld1q_u32(reinterpret_cast(input.ptr() + 0 * input_stride_in_bytes) + x); const uint32x4_t row1 = vld1q_u32(reinterpret_cast(input.ptr() + 1 * input_stride_in_bytes) + x); const uint32x4_t row2 = vld1q_u32(reinterpret_cast(input.ptr() + 2 * input_stride_in_bytes) + x); const uint32x4_t row3 = vld1q_u32(reinterpret_cast(input.ptr() + 3 * input_stride_in_bytes) + x); // Transpose 2x2 const uint32x2x2_t k0_u32 = vtrn_u32(vget_low_u32(row0), vget_low_u32(row1)); const uint32x2x2_t k1_u32 = vtrn_u32(vget_high_u32(row2), vget_high_u32(row3)); const uint32x2x2_t k2_u32 = vtrn_u32(vget_high_u32(row0), vget_high_u32(row1)); const uint32x2x2_t k3_u32 = vtrn_u32(vget_low_u32(row2), vget_low_u32(row3)); // Compute destination address const size_t dst_offset_in_bytes = id.y() * sizeof(uint32_t) + x * output_stride_in_bytes; // Swap block 01 with block 10 and store vst1q_u32(reinterpret_cast(output.ptr() + dst_offset_in_bytes + 0 * output_stride_in_bytes), vcombine_u32(k0_u32.val[0], k3_u32.val[0])); vst1q_u32(reinterpret_cast(output.ptr() + dst_offset_in_bytes + 1 * output_stride_in_bytes), vcombine_u32(k0_u32.val[1], k3_u32.val[1])); vst1q_u32(reinterpret_cast(output.ptr() + dst_offset_in_bytes + 2 * output_stride_in_bytes), vcombine_u32(k2_u32.val[0], k1_u32.val[0])); vst1q_u32(reinterpret_cast(output.ptr() + dst_offset_in_bytes + 3 * output_stride_in_bytes), vcombine_u32(k2_u32.val[1], k1_u32.val[1])); } // Compute left-over elements (1x4) for(; x < window_end_x; ++x) { const uint32_t val0 = *(reinterpret_cast(input.ptr() + 0 * input_stride_in_bytes) + x); const uint32_t val1 = *(reinterpret_cast(input.ptr() + 1 * input_stride_in_bytes) + x); const uint32_t val2 = *(reinterpret_cast(input.ptr() + 2 * input_stride_in_bytes) + x); const uint32_t val3 = *(reinterpret_cast(input.ptr() + 3 * input_stride_in_bytes) + x); uint32x4_t result = vdupq_n_u32(0); result = vsetq_lane_u32(val0, result, 0); result = vsetq_lane_u32(val1, result, 1); result = vsetq_lane_u32(val2, result, 2); result = vsetq_lane_u32(val3, result, 3); // Compute destination address const size_t dst_offset_in_bytes = id.y() * sizeof(uint32_t) + x * output_stride_in_bytes; vst1q_u32(reinterpret_cast(output.ptr() + dst_offset_in_bytes), result); } }, input, output); } if(left_over_loop_y) { window_in.set(Window::DimX, Window::Dimension(window.x().start(), window.x().end(), 1)); window_in.set(Window::DimY, Window::Dimension(window_end_y_multiple_of, window_end_y, 1)); Iterator input(in, window_in); Iterator output(out, window_out); // Compute left-over elements along the y dimension (1x1) execute_window_loop(window_in, [&](const Coordinates & id) { const uint32_t val0 = *(reinterpret_cast(input.ptr())); // Compute destination address const size_t dst_offset_in_bytes = id.y() * sizeof(uint32_t) + id.x() * output_stride_in_bytes; *(reinterpret_cast(output.ptr() + dst_offset_in_bytes)) = val0; }, input, output); } } } // namespace Status NETransposeKernel::validate(const ITensorInfo *input, const ITensorInfo *output) { ARM_COMPUTE_ERROR_ON_NULLPTR(input, output); ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, output)); ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input->clone().get(), output->clone().get()).first); return Status{}; } NETransposeKernel::NETransposeKernel() : _func(nullptr), _input(nullptr), _output(nullptr) { } void NETransposeKernel::configure(const ITensor *input, ITensor *output) { ARM_COMPUTE_ERROR_ON_NULLPTR(input, output); // Output tensor auto inizialitation if not yet initialized auto_init_if_empty(*output->info(), input->info()->clone()->set_tensor_shape(transposed_tensor_shape(input->info()->tensor_shape()))); ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), output->info())); _input = input; _output = output; switch(input->info()->element_size()) { case 1: _func = &transpose_8bit_elements; break; case 2: _func = &transpose_16bit_elements; break; case 4: _func = &transpose_32bit_elements; break; default: ARM_COMPUTE_ERROR("Element size not supported"); break; } // Configure kernel window auto win_config = validate_and_configure_window(input->info(), output->info()); ARM_COMPUTE_ERROR_THROW_ON(win_config.first); INEKernel::configure(win_config.second); } void NETransposeKernel::run(const Window &window, const ThreadInfo &info) { ARM_COMPUTE_UNUSED(info); ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window); ARM_COMPUTE_ERROR_ON(_func == nullptr); (*_func)(_input, _output, window); }