/* * Copyright (c) 2017 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/NEON/kernels/NETransposeKernel.h" #include "arm_compute/core/AccessWindowTranspose.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/ITensor.h" #include "arm_compute/core/Validate.h" #include using namespace arm_compute; namespace arm_compute { class Coordinates; } // namespace arm_compute namespace { void transpose_8bit_elements(const ITensor *in, ITensor *out, const Window &window) { Window window_out(window); window_out.set(Window::DimX, Window::Dimension(0, 0, 0)); window_out.set(Window::DimY, Window::Dimension(0, 0, 0)); Iterator input(in, window); Iterator output(out, window_out); const size_t input_stride_in_bytes = in->info()->strides_in_bytes()[1]; const size_t output_stride_in_bytes = out->info()->strides_in_bytes()[1]; execute_window_loop(window, [&](const Coordinates & id) { const uint8x8_t row0 = vld1_u8(reinterpret_cast(input.ptr() + 0 * input_stride_in_bytes)); const uint8x8_t row1 = vld1_u8(reinterpret_cast(input.ptr() + 1 * input_stride_in_bytes)); const uint8x8_t row2 = vld1_u8(reinterpret_cast(input.ptr() + 2 * input_stride_in_bytes)); const uint8x8_t row3 = vld1_u8(reinterpret_cast(input.ptr() + 3 * input_stride_in_bytes)); const uint8x8_t row4 = vld1_u8(reinterpret_cast(input.ptr() + 4 * input_stride_in_bytes)); const uint8x8_t row5 = vld1_u8(reinterpret_cast(input.ptr() + 5 * input_stride_in_bytes)); const uint8x8_t row6 = vld1_u8(reinterpret_cast(input.ptr() + 6 * input_stride_in_bytes)); const uint8x8_t row7 = vld1_u8(reinterpret_cast(input.ptr() + 7 * input_stride_in_bytes)); // Transpose 2x2 const uint8x8x2_t k0_u8 = vtrn_u8(row0, row1); const uint8x8x2_t k1_u8 = vtrn_u8(row2, row3); const uint8x8x2_t k2_u8 = vtrn_u8(row4, row5); const uint8x8x2_t k3_u8 = vtrn_u8(row6, row7); // Transpose 4x4 const uint16x4x2_t k0_u16 = vtrn_u16(vreinterpret_u16_u8(k0_u8.val[0]), vreinterpret_u16_u8(k1_u8.val[0])); const uint16x4x2_t k1_u16 = vtrn_u16(vreinterpret_u16_u8(k0_u8.val[1]), vreinterpret_u16_u8(k1_u8.val[1])); const uint16x4x2_t k2_u16 = vtrn_u16(vreinterpret_u16_u8(k2_u8.val[0]), vreinterpret_u16_u8(k3_u8.val[0])); const uint16x4x2_t k3_u16 = vtrn_u16(vreinterpret_u16_u8(k2_u8.val[1]), vreinterpret_u16_u8(k3_u8.val[1])); // Transpose 8x8 const uint32x2x2_t k0_u32 = vtrn_u32(vreinterpret_u32_u16(k0_u16.val[0]), vreinterpret_u32_u16(k2_u16.val[0])); const uint32x2x2_t k1_u32 = vtrn_u32(vreinterpret_u32_u16(k0_u16.val[1]), vreinterpret_u32_u16(k2_u16.val[1])); const uint32x2x2_t k2_u32 = vtrn_u32(vreinterpret_u32_u16(k1_u16.val[0]), vreinterpret_u32_u16(k3_u16.val[0])); const uint32x2x2_t k3_u32 = vtrn_u32(vreinterpret_u32_u16(k1_u16.val[1]), vreinterpret_u32_u16(k3_u16.val[1])); // Compute destination address const size_t dst_offset_in_bytes = id.y() * sizeof(uint8_t) + id.x() * output_stride_in_bytes; vst1_u8(reinterpret_cast(output.ptr() + dst_offset_in_bytes + 0 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k0_u32.val[0]))); vst1_u8(reinterpret_cast(output.ptr() + dst_offset_in_bytes + 1 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k2_u32.val[0]))); vst1_u8(reinterpret_cast(output.ptr() + dst_offset_in_bytes + 2 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k1_u32.val[0]))); vst1_u8(reinterpret_cast(output.ptr() + dst_offset_in_bytes + 3 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k3_u32.val[0]))); vst1_u8(reinterpret_cast(output.ptr() + dst_offset_in_bytes + 4 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k0_u32.val[1]))); vst1_u8(reinterpret_cast(output.ptr() + dst_offset_in_bytes + 5 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k2_u32.val[1]))); vst1_u8(reinterpret_cast(output.ptr() + dst_offset_in_bytes + 6 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k1_u32.val[1]))); vst1_u8(reinterpret_cast(output.ptr() + dst_offset_in_bytes + 7 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k3_u32.val[1]))); }, input, output); } void transpose_16bit_elements(const ITensor *in, ITensor *out, const Window &window) { Window window_out(window); window_out.set(Window::DimX, Window::Dimension(0, 0, 0)); window_out.set(Window::DimY, Window::Dimension(0, 0, 0)); Iterator input(in, window); Iterator output(out, window_out); const size_t input_stride_in_bytes = in->info()->strides_in_bytes()[1]; const size_t output_stride_in_bytes = out->info()->strides_in_bytes()[1]; execute_window_loop(window, [&](const Coordinates & id) { const uint16x4_t row0 = vld1_u16(reinterpret_cast(input.ptr() + 0 * input_stride_in_bytes)); const uint16x4_t row1 = vld1_u16(reinterpret_cast(input.ptr() + 1 * input_stride_in_bytes)); const uint16x4_t row2 = vld1_u16(reinterpret_cast(input.ptr() + 2 * input_stride_in_bytes)); const uint16x4_t row3 = vld1_u16(reinterpret_cast(input.ptr() + 3 * input_stride_in_bytes)); // Transpose 2x2 const uint16x4x2_t k0_u16 = vtrn_u16(row0, row1); const uint16x4x2_t k1_u16 = vtrn_u16(row2, row3); // Transpose 4x4 const uint32x2x2_t k0_u32 = vtrn_u32(vreinterpret_u32_u16(k0_u16.val[0]), vreinterpret_u32_u16(k1_u16.val[0])); const uint32x2x2_t k1_u32 = vtrn_u32(vreinterpret_u32_u16(k0_u16.val[1]), vreinterpret_u32_u16(k1_u16.val[1])); // Compute destination address const size_t dst_offset_in_bytes = id.y() * sizeof(uint16_t) + id.x() * output_stride_in_bytes; vst1_u16(reinterpret_cast(output.ptr() + dst_offset_in_bytes + 0 * output_stride_in_bytes), vreinterpret_u16_u32(k0_u32.val[0])); vst1_u16(reinterpret_cast(output.ptr() + dst_offset_in_bytes + 1 * output_stride_in_bytes), vreinterpret_u16_u32(k1_u32.val[0])); vst1_u16(reinterpret_cast(output.ptr() + dst_offset_in_bytes + 2 * output_stride_in_bytes), vreinterpret_u16_u32(k0_u32.val[1])); vst1_u16(reinterpret_cast(output.ptr() + dst_offset_in_bytes + 3 * output_stride_in_bytes), vreinterpret_u16_u32(k1_u32.val[1])); }, input, output); } void transpose_32bit_elements(const ITensor *in, ITensor *out, const Window &window) { Window window_out(window); window_out.set(Window::DimX, Window::Dimension(0, 0, 0)); window_out.set(Window::DimY, Window::Dimension(0, 0, 0)); Iterator input(in, window); Iterator output(out, window_out); const size_t input_stride_in_bytes = in->info()->strides_in_bytes()[1]; const size_t output_stride_in_bytes = out->info()->strides_in_bytes()[1]; execute_window_loop(window, [&](const Coordinates & id) { const uint32x4_t row0 = vld1q_u32(reinterpret_cast(input.ptr() + 0 * input_stride_in_bytes)); const uint32x4_t row1 = vld1q_u32(reinterpret_cast(input.ptr() + 1 * input_stride_in_bytes)); const uint32x4_t row2 = vld1q_u32(reinterpret_cast(input.ptr() + 2 * input_stride_in_bytes)); const uint32x4_t row3 = vld1q_u32(reinterpret_cast(input.ptr() + 3 * input_stride_in_bytes)); // Transpose 2x2 const uint32x2x2_t k0_u32 = vtrn_u32(vget_low_u32(row0), vget_low_u32(row1)); const uint32x2x2_t k1_u32 = vtrn_u32(vget_high_u32(row2), vget_high_u32(row3)); const uint32x2x2_t k2_u32 = vtrn_u32(vget_high_u32(row0), vget_high_u32(row1)); const uint32x2x2_t k3_u32 = vtrn_u32(vget_low_u32(row2), vget_low_u32(row3)); // Compute destination address const size_t dst_offset_in_bytes = id.y() * sizeof(uint32_t) + id.x() * output_stride_in_bytes; // Swap block 01 with block 10 and store vst1q_u32(reinterpret_cast(output.ptr() + dst_offset_in_bytes + 0 * output_stride_in_bytes), vcombine_u32(k0_u32.val[0], k3_u32.val[0])); vst1q_u32(reinterpret_cast(output.ptr() + dst_offset_in_bytes + 1 * output_stride_in_bytes), vcombine_u32(k0_u32.val[1], k3_u32.val[1])); vst1q_u32(reinterpret_cast(output.ptr() + dst_offset_in_bytes + 2 * output_stride_in_bytes), vcombine_u32(k2_u32.val[0], k1_u32.val[0])); vst1q_u32(reinterpret_cast(output.ptr() + dst_offset_in_bytes + 3 * output_stride_in_bytes), vcombine_u32(k2_u32.val[1], k1_u32.val[1])); }, input, output); } } // namespace NETransposeKernel::NETransposeKernel() : _func(nullptr), _input(nullptr), _output(nullptr) { } void NETransposeKernel::configure(const ITensor *input, ITensor *output) { ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::U8, DataType::S8, DataType::QS8, DataType::U16, DataType::S16, DataType::QS16, DataType::U32, DataType::S32, DataType::F16, DataType::F32); ARM_COMPUTE_ERROR_ON_NULLPTR(output); TensorShape output_shape{ input->info()->tensor_shape() }; const size_t w_out = input->info()->dimension(1); const size_t h_out = input->info()->dimension(0); output_shape.set(0, w_out); output_shape.set(1, h_out); // Output tensor auto inizialitation if not yet initialized auto_init_if_empty(*output->info(), output_shape, 1, input->info()->data_type(), input->info()->fixed_point_position()); ARM_COMPUTE_ERROR_ON_MISMATCHING_DIMENSIONS(output->info()->tensor_shape(), output_shape); ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, output); ARM_COMPUTE_ERROR_ON_MISMATCHING_FIXED_POINT(input, output); _input = input; _output = output; unsigned int num_elems_processed_per_iteration = 0; switch(input->info()->element_size()) { case 1: _func = &transpose_8bit_elements; num_elems_processed_per_iteration = 8; break; case 2: _func = &transpose_16bit_elements; num_elems_processed_per_iteration = 4; break; case 4: _func = &transpose_32bit_elements; num_elems_processed_per_iteration = 4; break; default: ARM_COMPUTE_ERROR("Element size not supported"); break; } // Configure kernel window Window win = calculate_max_window(*input->info(), Steps(num_elems_processed_per_iteration, num_elems_processed_per_iteration)); AccessWindowTranspose output_access(output->info(), 0, 0, num_elems_processed_per_iteration, num_elems_processed_per_iteration); update_window_and_padding(win, AccessWindowRectangle(input->info(), 0, 0, num_elems_processed_per_iteration, num_elems_processed_per_iteration), output_access); output_access.set_valid_region(win, input->info()->valid_region()); INEKernel::configure(win); } void NETransposeKernel::run(const Window &window, const ThreadInfo &info) { ARM_COMPUTE_UNUSED(info); ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window); ARM_COMPUTE_ERROR_ON(_func == nullptr); (*_func)(_input, _output, window); }