/* * Copyright (c) 2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/NEON/kernels/NESpaceToBatchLayerKernel.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/ITensor.h" #include "arm_compute/core/NEON/wrapper/wrapper.h" #include "arm_compute/core/Types.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/utils/misc/ShapeCalculator.h" #include #include using namespace arm_compute::misc::shape_calculator; namespace arm_compute { namespace { Status validate_arguments(const ITensorInfo *input, const ITensorInfo *block_info, const ITensorInfo *padddings, const ITensorInfo *output) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, block_info, padddings, output); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(block_info, 1, DataType::S32); ARM_COMPUTE_RETURN_ERROR_ON(input->num_dimensions() > 4); ARM_COMPUTE_RETURN_ERROR_ON(block_info->num_dimensions() > 1); ARM_COMPUTE_RETURN_ERROR_ON(padddings->num_dimensions() > 2); ARM_COMPUTE_RETURN_ERROR_ON(padddings->tensor_shape()[1] != block_info->tensor_shape()[0]); // Validate output if initialized if(output->total_size() != 0) { const DataLayout data_layout = input->data_layout(); const int idx_channel = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL); ARM_COMPUTE_RETURN_ERROR_ON(input->tensor_shape()[idx_channel] != output->tensor_shape()[idx_channel]); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output); } return Status{}; } Status validate_arguments_static(const ITensorInfo *input, const int block_shape_x, const int block_shape_y, const Size2D &padding_left, const Size2D &padding_right, const ITensorInfo *output) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, output); ARM_COMPUTE_RETURN_ERROR_ON(block_shape_x < 1 || block_shape_y < 1); ARM_COMPUTE_RETURN_ERROR_ON(input->num_dimensions() > 4); // Validate output if initialized if(output->total_size() != 0) { const DataLayout data_layout = input->data_layout(); const int idx_width = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH); const int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT); const int idx_channel = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL); const int idx_batch = get_data_layout_dimension_index(data_layout, DataLayoutDimension::BATCHES); ARM_COMPUTE_RETURN_ERROR_ON(output->tensor_shape()[idx_width] < padding_left.x() + padding_right.y()); ARM_COMPUTE_RETURN_ERROR_ON((input->tensor_shape()[idx_width] + padding_left.x() + padding_right.x()) % block_shape_x != 0); ARM_COMPUTE_RETURN_ERROR_ON((input->tensor_shape()[idx_height] + padding_left.y() + padding_right.y()) % block_shape_y != 0); ARM_COMPUTE_RETURN_ERROR_ON(input->tensor_shape()[idx_channel] != output->tensor_shape()[idx_channel]); ARM_COMPUTE_RETURN_ERROR_ON(output->tensor_shape()[idx_batch] % (block_shape_x * block_shape_y) != 0); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_QUANTIZATION_INFO(input, output); } return Status{}; } } // namespace NESpaceToBatchLayerKernel::NESpaceToBatchLayerKernel() : _input(nullptr), _block_shape(nullptr), _paddings(nullptr), _output(nullptr), _padding_left(), _block_shape_x(), _block_shape_y() { } void NESpaceToBatchLayerKernel::configure(const ITensor *input, const ITensor *block_shape, const ITensor *paddings, ITensor *output) { ARM_COMPUTE_ERROR_ON_NULLPTR(input, output); ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), block_shape->info(), paddings->info(), output->info())); _input = input; _block_shape = block_shape; _paddings = paddings; _output = output; // Configure kernel window Window win = calculate_max_window(*output->info(), Steps()); ICPPKernel::configure(win); } void NESpaceToBatchLayerKernel::configure(const ITensor *input, const int block_shape_x, const int block_shape_y, const Size2D &padding_left, const Size2D &padding_right, ITensor *output) { ARM_COMPUTE_ERROR_ON_NULLPTR(input, output); TensorShape output_shape = misc::shape_calculator::compute_space_to_batch_shape(input->info(), block_shape_x, block_shape_y, padding_left, padding_right); auto_init_if_empty(*output->info(), output_shape, 1, input->info()->data_type(), input->info()->quantization_info()); ARM_COMPUTE_ERROR_THROW_ON(validate_arguments_static(input->info(), block_shape_x, block_shape_y, padding_left, padding_right, output->info())); _input = input; _output = output; _block_shape_x = block_shape_x; _block_shape_y = block_shape_y; _padding_left = padding_left; // Configure kernel window Window win = calculate_max_window(*output->info(), Steps()); INEKernel::configure(win); } Status NESpaceToBatchLayerKernel::validate(const ITensorInfo *input, const ITensorInfo *block_shape, const ITensorInfo *paddings, const ITensorInfo *output) { ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, block_shape, paddings, output)); return Status{}; } Status NESpaceToBatchLayerKernel::validate(const ITensorInfo *input, const int block_shape_x, const int block_shape_y, const Size2D &padding_left, const Size2D &padding_right, const ITensorInfo *output) { ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_static(input, block_shape_x, block_shape_y, padding_left, padding_right, output)); return Status{}; } void NESpaceToBatchLayerKernel::run(const Window &window, const ThreadInfo &info) { ARM_COMPUTE_UNUSED(info); ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICPPKernel::window(), window); if(_block_shape != nullptr) { // Retrieve the block shapes dynamically _block_shape_x = *(reinterpret_cast(_block_shape->ptr_to_element(0))); _block_shape_y = *(reinterpret_cast(_block_shape->ptr_to_element(1))); } if(_paddings != nullptr) { const size_t pad_left_x = *reinterpret_cast(_paddings->ptr_to_element({ 0, 0 })); const size_t pad_left_y = *reinterpret_cast(_paddings->ptr_to_element({ 1, 0 })); _padding_left = Size2D(pad_left_x, pad_left_y); } const DataLayout data_layout = _input->info()->data_layout(); const int height_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT); const int width_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH); const int element_size = _input->info()->element_size(); const size_t height = _input->info()->dimension(height_idx); const size_t width = _input->info()->dimension(width_idx); const size_t batch_size = _input->info()->dimension(3); Window slice_out = window.first_slice_window_3D(); int batch_id = 0; // Main loop for NCHW and NHWC if(_output->info()->data_layout() == DataLayout::NCHW) { do { Iterator out(_output, slice_out); execute_window_loop(slice_out, [&](const Coordinates & id) { const size_t out_x = id.x(); const size_t out_y = id.y(); const size_t z = id.z(); const size_t pos_x = out_x * _block_shape_x + (batch_id / batch_size) % _block_shape_x; const size_t pos_y = out_y * _block_shape_y + (batch_id / batch_size) / _block_shape_x; if(pos_y >= _padding_left.y() && pos_y < _padding_left.y() + height && pos_x >= _padding_left.x() && pos_x < _padding_left.x() + width) { const int w = batch_id % batch_size; const int in_x = pos_x - _padding_left.x(); const int in_y = pos_y - _padding_left.y(); Coordinates input_coords{ in_x, in_y, z, w }; memcpy(out.ptr(), _input->ptr_to_element(input_coords), element_size); } }, out); ++batch_id; } while(window.slide_window_slice_3D(slice_out)); } else { do { Iterator out(_output, slice_out); execute_window_loop(slice_out, [&](const Coordinates & id) { const size_t out_x = id.y(); const size_t out_y = id.z(); const size_t z = id.x(); const size_t pos_x = out_x * _block_shape_x + (batch_id / batch_size) % _block_shape_x; const size_t pos_y = out_y * _block_shape_y + (batch_id / batch_size) / _block_shape_x; if(pos_y >= _padding_left.y() && pos_y < _padding_left.y() + height && pos_x >= _padding_left.x() && pos_x < _padding_left.x() + width) { const int w = batch_id % batch_size; const int in_x = pos_x - _padding_left.x(); const int in_y = pos_y - _padding_left.y(); Coordinates input_coords{ z, in_x, in_y, w }; memcpy(out.ptr(), _input->ptr_to_element(input_coords), element_size); } }, out); ++batch_id; } while(window.slide_window_slice_3D(slice_out)); } } } // namespace arm_compute