/* * Copyright (c) 2017-2020 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/NEON/kernels/NESoftmaxLayerKernel.h" #include "arm_compute/core/AccessWindowStatic.h" #include "arm_compute/core/CPP/Validate.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/ITensor.h" #include "arm_compute/core/NEON/NEFixedPoint.h" #include "arm_compute/core/NEON/NEMath.h" #include "arm_compute/core/NEON/wrapper/wrapper.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/Utils.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/Window.h" #include "arm_compute/core/utils/misc/SaturateCast.h" #include #include #include #include namespace arm_compute { template int_vec_type convert_float_to_int(const float_vec_type &in); template float_vec_type convert_int_to_float(const int_vec_type &in); template <> uint8x16_t convert_float_to_int(const float32x4x4_t &in) { uint8x16_t out; convert_float32x4x4_to_uint8x16(in, out); return out; } template <> int8x16_t convert_float_to_int(const float32x4x4_t &in) { int8x16_t out; convert_float32x4x4_to_int8x16(in, out); return out; } template <> float32x4x4_t convert_int_to_float(const uint8x16_t &in) { return convert_uint8x16_to_float32x4x4(in); } template <> float32x4x4_t convert_int_to_float(const int8x16_t &in) { return convert_int8x16_to_float32x4x4(in); } namespace { Status validate_arguments_logits_1d_max(const ITensorInfo &input, const ITensorInfo &output) { ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(&input); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&input, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::F16, DataType::F32); // Validate in case of configured output if(output.total_size() != 0) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&input, &output); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_QUANTIZATION_INFO(&input, &output); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(output.tensor_shape(), TensorShape(input.tensor_shape()).set(0, 1)); } return Status{}; } template void logits_1d_max(const ITensor &in, ITensor &out, const Window &window) { /** NEON vector tag type. */ using ExactTagType = typename wrapper::traits::neon_bitvector_tag_t; constexpr int window_step_x = 16 / sizeof(T); const auto window_start_x = static_cast(window.x().start()); const auto window_end_x = static_cast(window.x().end()); Window win{ window }; win.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator input(&in, win); Iterator output(&out, win); const int sum_stages = log2(window_step_x / 2); execute_window_loop(win, [&](const Coordinates &) { // Get pointers const auto in_ptr = reinterpret_cast(input.ptr()); const auto out_ptr = reinterpret_cast(output.ptr()); // Init max value auto vec_max = wrapper::vdup_n(support::cpp11::lowest(), ExactTagType{}); int x = window_start_x; for(; x <= (window_end_x - window_step_x); x += window_step_x) { const auto current_value = wrapper::vloadq(in_ptr + x); vec_max = wrapper::vmax(vec_max, current_value); } auto carry_max = wrapper::vpmax(wrapper::vgethigh(vec_max), wrapper::vgetlow(vec_max)); for(int i = 0; i < sum_stages; ++i) { carry_max = wrapper::vpmax(carry_max, carry_max); } T max_val = wrapper::vgetlane(carry_max, 0); // Compute left-over elements for(; x < window_end_x; ++x) { max_val = *(in_ptr + x) > max_val ? *(in_ptr + x) : max_val; } *out_ptr = max_val; }, input, output); } } // namespace NELogits1DMaxKernel::NELogits1DMaxKernel() : _func(nullptr), _border_size() { } BorderSize NELogits1DMaxKernel::border_size() const { return _border_size; } void NELogits1DMaxKernel::configure(const ITensor *input, ITensor *output) { ARM_COMPUTE_ERROR_ON_NULLPTR(input, output); ARM_COMPUTE_ERROR_ON_NULLPTR(input->info(), output->info()); // Perform validation step ARM_COMPUTE_ERROR_THROW_ON(validate_arguments_logits_1d_max(*input->info(), *output->info())); // Configure kernel window // Softmax across the x dimension const TensorShape output_shape = TensorShape(input->info()->tensor_shape()).set(0, 1); // Output auto initialization if not yet initialized auto_init_if_empty(*output->info(), output_shape, 1, input->info()->data_type(), input->info()->quantization_info()); Window win = calculate_max_window(*input->info(), Steps()); Coordinates coord; coord.set_num_dimensions(output->info()->num_dimensions()); output->info()->set_valid_region(ValidRegion(coord, output->info()->tensor_shape())); switch(input->info()->data_type()) { case DataType::QASYMM8: _func = &logits_1d_max; break; case DataType::QASYMM8_SIGNED: _func = &logits_1d_max; break; #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC case DataType::F16: _func = &logits_1d_max; break; #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */ case DataType::F32: _func = &logits_1d_max; break; default: ARM_COMPUTE_ERROR("Unsupported data type."); } _input = input; _output = output; const int input_width = input->info()->valid_region().shape.x(); const int num_elems_processed_per_iteration = 16U / data_size_from_type(input->info()->data_type()); const int num_elems_read_per_iteration = ceil_to_multiple(input_width, num_elems_processed_per_iteration); _border_size = BorderSize(0, num_elems_read_per_iteration - input_width, 0, 0); INEKernel::configure(win); } Status NELogits1DMaxKernel::validate(const ITensorInfo *input, const ITensorInfo *output) { ARM_COMPUTE_ERROR_ON_NULLPTR(input, output); ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_logits_1d_max(*input, *output)); return Status{}; } void NELogits1DMaxKernel::run(const Window &window, const ThreadInfo &info) { ARM_COMPUTE_UNUSED(info); ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window); ARM_COMPUTE_ERROR_ON(_func == nullptr); (*_func)(*_input, *_output, window); } namespace { Status validate_arguments_logits_softmax(const ITensorInfo &input, const ITensorInfo &max, const ITensorInfo &output, const float beta, const ITensorInfo &tmp, bool is_log) { ARM_COMPUTE_UNUSED(beta); // Check input ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(&input); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&input, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::F16, DataType::F32); const bool is_quantized_asymmetric = is_data_type_quantized_asymmetric(input.data_type()); // Check max ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&input, &max); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(TensorShape(input.tensor_shape()).set(0, 1), max.tensor_shape()); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_QUANTIZATION_INFO(&input, &max); // Check output if configured if(output.total_size() != 0) { const QuantizationInfo output_quantization = is_quantized_asymmetric ? arm_compute::get_softmax_output_quantization_info(input.data_type(), is_log) : output.quantization_info(); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&input, &output); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(&input, &output); ARM_COMPUTE_RETURN_ERROR_ON(output.quantization_info() != output_quantization); } // Check tmp if configured if(tmp.total_size() != 0) { const DataType tmp_data_type = is_quantized_asymmetric ? DataType::F32 : input.data_type(); ARM_COMPUTE_RETURN_ERROR_ON(tmp.data_type() != tmp_data_type); // We could potentially reduce tmp memory if we could predict or make an assumption // on the maximum number of threads that will run in parallel. ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(&input, &tmp); } return Status{}; } template void logits_1d_softmax_qasymm8(const ITensor &in, const ITensor &max, void *const tmp, ITensor &out, const float beta, const Window &window) { static_assert(std::is_same::value || std::is_same::value, "quantized type should be either qasymm8_t or qasymm8_signed_t."); const int start_x = in.info()->valid_region().anchor.x(); const int input_width = in.info()->valid_region().shape.x(); const float scale_beta = -beta * in.info()->quantization_info().uniform().scale; const auto scale_beta_vec = vdupq_n_f32(scale_beta); Iterator in_it(&in, window); Iterator max_it(&max, window); Iterator out_it(&out, window); constexpr int vec_size = 16; execute_window_loop(window, [&](const Coordinates &) { /* Get pointers */ const auto in_ptr = reinterpret_cast(in_it.ptr()) + start_x; const auto out_ptr = reinterpret_cast(out_it.ptr()) + start_x; const auto tmp_ptr = reinterpret_cast(tmp); float sum{}; float sum_inversed{}; /* Compute exponentials and sum */ { /* Get max value */ const auto max_val = *reinterpret_cast(max_it.ptr()); const auto vec_max = wrapper::vdup_n(max_val, wrapper::traits::vector_128_tag{}); /* Init sum to zero */ float32x4x4_t vec_sum = { vdupq_n_f32(0.f), vdupq_n_f32(0.f), vdupq_n_f32(0.f), vdupq_n_f32(0.f), }; /* Loop over row and compute exponentials and sum */ int x = 0; for(; x <= (input_width - vec_size); x += vec_size) { auto vec_elements = wrapper::vloadq(in_ptr + x); vec_elements = wrapper::vqsub(vec_max, vec_elements); auto vec_elements_flt = convert_int_to_float(vec_elements); if(is_log) { vec_elements_flt.val[0] = vmulq_f32(vec_elements_flt.val[0], scale_beta_vec); vec_elements_flt.val[1] = vmulq_f32(vec_elements_flt.val[1], scale_beta_vec); vec_elements_flt.val[2] = vmulq_f32(vec_elements_flt.val[2], scale_beta_vec); vec_elements_flt.val[3] = vmulq_f32(vec_elements_flt.val[3], scale_beta_vec); vec_sum.val[0] = vaddq_f32(vec_sum.val[0], vexpq_f32(vec_elements_flt.val[0])); vec_sum.val[1] = vaddq_f32(vec_sum.val[1], vexpq_f32(vec_elements_flt.val[1])); vec_sum.val[2] = vaddq_f32(vec_sum.val[2], vexpq_f32(vec_elements_flt.val[2])); vec_sum.val[3] = vaddq_f32(vec_sum.val[3], vexpq_f32(vec_elements_flt.val[3])); } else { vec_elements_flt.val[0] = vexpq_f32(vmulq_f32(vec_elements_flt.val[0], scale_beta_vec)); vec_elements_flt.val[1] = vexpq_f32(vmulq_f32(vec_elements_flt.val[1], scale_beta_vec)); vec_elements_flt.val[2] = vexpq_f32(vmulq_f32(vec_elements_flt.val[2], scale_beta_vec)); vec_elements_flt.val[3] = vexpq_f32(vmulq_f32(vec_elements_flt.val[3], scale_beta_vec)); vec_sum.val[0] = vaddq_f32(vec_sum.val[0], vec_elements_flt.val[0]); vec_sum.val[1] = vaddq_f32(vec_sum.val[1], vec_elements_flt.val[1]); vec_sum.val[2] = vaddq_f32(vec_sum.val[2], vec_elements_flt.val[2]); vec_sum.val[3] = vaddq_f32(vec_sum.val[3], vec_elements_flt.val[3]); } vst4q_f32(tmp_ptr + x, vec_elements_flt); } /* Reduce sum */ const auto sum_16_byte = vaddq_f32(vaddq_f32(vec_sum.val[0], vec_sum.val[1]), vaddq_f32(vec_sum.val[2], vec_sum.val[3])); auto sum_res = vpadd_f32(vget_high_f32(sum_16_byte), vget_low_f32(sum_16_byte)); sum_res = vpadd_f32(sum_res, sum_res); sum = wrapper::vgetlane(sum_res, 0); /* Run remaining elements */ for(; x < input_width; ++x) { float element{}; if(is_log) { element = (max_val - in_ptr[x]) * scale_beta; sum += std::exp(element); } else { element = std::exp((max_val - in_ptr[x]) * scale_beta); sum += element; } tmp_ptr[x] = element; } if(!is_log) { sum_inversed = 256.f / sum; } } /* Normalize exponentials */ { constexpr bool is_qasymm8_signed = std::is_same::value; /* Loop over row and compute softmax */ int x = 0; for(; x <= (input_width - vec_size); x += vec_size) { using int_vec_type = wrapper::traits::neon_vector_t; float32x4x4_t vec_in = vld4q_f32(tmp_ptr + x); int_vec_type normalized_value{}; if(is_log) { const float32x4x4_t sub = { vsubq_f32(vec_in.val[0], vdupq_n_f32(sum)), vsubq_f32(vec_in.val[1], vdupq_n_f32(sum)), vsubq_f32(vec_in.val[2], vdupq_n_f32(sum)), vsubq_f32(vec_in.val[3], vdupq_n_f32(sum)), }; normalized_value = convert_float_to_int(sub); } else { float32x4x4_t mul = { vmulq_f32(vec_in.val[0], vdupq_n_f32(sum_inversed)), vmulq_f32(vec_in.val[1], vdupq_n_f32(sum_inversed)), vmulq_f32(vec_in.val[2], vdupq_n_f32(sum_inversed)), vmulq_f32(vec_in.val[3], vdupq_n_f32(sum_inversed)), }; if(is_qasymm8_signed) { const auto offset_vec = wrapper::vdup_n(128.f, wrapper::traits::vector_128_tag{}); mul.val[0] = wrapper::vsub(mul.val[0], offset_vec); mul.val[1] = wrapper::vsub(mul.val[1], offset_vec); mul.val[2] = wrapper::vsub(mul.val[2], offset_vec); mul.val[3] = wrapper::vsub(mul.val[3], offset_vec); } normalized_value = convert_float_to_int(mul); } wrapper::vstore(out_ptr + x, normalized_value); } /* Run remaining elements */ for(; x < input_width; ++x) { if(is_log) { out_ptr[x] = utils::cast::saturate_cast(tmp_ptr[x] - sum); } else { out_ptr[x] = utils::cast::saturate_cast((tmp_ptr[x] * sum_inversed) - (is_qasymm8_signed ? 128.f : 0)); } } } }, in_it, max_it, out_it); } template void logits_1d_softmax_float(const ITensor &in, const ITensor &max, void *const tmp, ITensor &out, const float beta, const Window &window) { const int start_x = in.info()->valid_region().anchor.x(); const int input_width = in.info()->valid_region().shape.x(); Iterator in_it(&in, window); Iterator max_it(&max, window); Iterator out_it(&out, window); /** NEON vector tag type. */ using ExactTagType = typename wrapper::traits::neon_bitvector_tag_t; constexpr int vec_size = 16 / sizeof(T); const int sum_stages = log2(vec_size / 2); execute_window_loop(window, [&](const Coordinates &) { /* Get pointers */ const auto in_ptr = reinterpret_cast(in_it.ptr()) + start_x; const auto out_ptr = reinterpret_cast(out_it.ptr()) + start_x; const auto tmp_ptr = reinterpret_cast(tmp); T sum{}; T sum_inversed{}; /* Compute exponentials and sum */ { /* Get max value */ const auto max_val = *reinterpret_cast(max_it.ptr()); const auto vec_max = wrapper::vdup_n(max_val, ExactTagType{}); /* Init sum to zero */ auto vec_sum = wrapper::vdup_n(static_cast(0), ExactTagType{}); /* Loop over row and compute exponentials and sum */ int x = 0; for(; x <= (input_width - vec_size); x += vec_size) { auto vec_elements = wrapper::vloadq(in_ptr + x); vec_elements = wrapper::vsub(vec_elements, vec_max); if(is_log) { vec_elements = wrapper::vmul(vec_elements, wrapper::vdup_n(static_cast(beta), ExactTagType{})); vec_sum = wrapper::vadd(vec_sum, wrapper::vexpq(vec_elements)); } else { vec_elements = wrapper::vexpq(wrapper::vmul(vec_elements, wrapper::vdup_n(static_cast(beta), ExactTagType{}))); vec_sum = wrapper::vadd(vec_sum, vec_elements); } wrapper::vstore(tmp_ptr + x, vec_elements); } /* Reduce sum */ auto sum_res = wrapper::vpadd(wrapper::vgethigh(vec_sum), wrapper::vgetlow(vec_sum)); for(int i = 0; i < sum_stages; ++i) { sum_res = wrapper::vpadd(sum_res, sum_res); } sum = wrapper::vgetlane(sum_res, 0); /* Run remaining elements */ for(; x < input_width; ++x) { T element{}; if(is_log) { element = (in_ptr[x] - max_val) * beta; sum += std::exp(element); } else { element = std::exp((in_ptr[x] - max_val) * beta); sum += element; } tmp_ptr[x] = element; } if(!is_log) { sum_inversed = T(1) / sum; } } /* Normalize exponentials */ { /* Loop over row and compute softmax */ int x = 0; for(; x <= (input_width - vec_size); x += vec_size) { auto vec_in = wrapper::vloadq(tmp_ptr + x); auto normalized_value = wrapper::vdup_n(static_cast(0), ExactTagType{}); if(is_log) { normalized_value = wrapper::vsub(vec_in, wrapper::vdup_n(static_cast(sum), ExactTagType{})); } else { normalized_value = wrapper::vmul(vec_in, wrapper::vdup_n(static_cast(sum_inversed), ExactTagType{})); } wrapper::vstore(out_ptr + x, normalized_value); } /* Run remaining elements */ for(; x < input_width; ++x) { if(is_log) { out_ptr[x] = tmp_ptr[x] - sum; } else { out_ptr[x] = tmp_ptr[x] * sum_inversed; } } } }, in_it, max_it, out_it); } } // namespace template NELogits1DSoftmaxKernel::NELogits1DSoftmaxKernel() : _func(nullptr), _input(nullptr), _max(nullptr), _output(nullptr), _beta(1.0f), _tmp(nullptr) { } template void NELogits1DSoftmaxKernel::configure(const ITensor *input, const ITensor *max, ITensor *output, const float beta, ITensor *tmp) { ARM_COMPUTE_ERROR_ON_NULLPTR(input, max, output, tmp); ARM_COMPUTE_ERROR_ON_NULLPTR(input->info(), max->info(), output->info(), tmp->info()); // Perform validation step ARM_COMPUTE_ERROR_THROW_ON(validate_arguments_logits_softmax(*input->info(), *max->info(), *output->info(), beta, *tmp->info(), IS_LOG)); // Configure kernel window const bool is_quantized_asymmetric = is_data_type_quantized_asymmetric(input->info()->data_type()); // Output auto initialization if not yet initialized const QuantizationInfo output_quantization = is_quantized_asymmetric ? arm_compute::get_softmax_output_quantization_info(input->info()->data_type(), IS_LOG) : output->info()->quantization_info(); auto_init_if_empty(*output->info(), TensorInfo(*input->info()).set_quantization_info(output_quantization).reset_padding()); // Tmp auto initialization if not yet initialized const DataType tmp_data_type = is_quantized_asymmetric ? DataType::F32 : input->info()->data_type(); auto_init_if_empty(*tmp->info(), TensorInfo(*input->info()).set_data_type(tmp_data_type).reset_padding()); // Configure kernel window Window win = calculate_max_window(*max->info(), Steps()); Coordinates coord; coord.set_num_dimensions(output->info()->num_dimensions()); output->info()->set_valid_region(ValidRegion(coord, output->info()->tensor_shape())); switch(input->info()->data_type()) { case DataType::QASYMM8: _func = &logits_1d_softmax_qasymm8; break; case DataType::QASYMM8_SIGNED: _func = &logits_1d_softmax_qasymm8; break; #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC case DataType::F16: _func = &logits_1d_softmax_float; break; #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */ case DataType::F32: _func = &logits_1d_softmax_float; break; default: ARM_COMPUTE_ERROR("Unsupported data type."); break; } _input = input; _max = max; _output = output; _beta = beta; _tmp = tmp; INEKernel::configure(win); } template Status NELogits1DSoftmaxKernel::validate(const ITensorInfo *input, const ITensorInfo *max, const ITensorInfo *output, const float beta, const ITensorInfo *tmp) { ARM_COMPUTE_ERROR_ON_NULLPTR(input, max, output, tmp); ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_logits_softmax(*input, *max, *output, beta, *tmp, IS_LOG)); return Status{}; } template void NELogits1DSoftmaxKernel::run(const Window &window, const ThreadInfo &info) { ARM_COMPUTE_UNUSED(info); ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window); const unsigned int num_elems_processed_per_iteration = _input->info()->valid_region().shape.x(); const unsigned int tmp_size_for_thread = _tmp->info()->element_size() * num_elems_processed_per_iteration; ARM_COMPUTE_ERROR_ON(_tmp->info()->total_size() < (info.num_threads * tmp_size_for_thread)); void *tmp_for_thread = _tmp->buffer() + (info.thread_id * tmp_size_for_thread); (*_func)(*_input, *_max, tmp_for_thread, *_output, _beta, window); } template class NELogits1DSoftmaxKernel; template class NELogits1DSoftmaxKernel; } // namespace arm_compute