/* * Copyright (c) 2017-2021 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "src/core/NEON/kernels/NESoftmaxLayerKernel.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/ITensor.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/Window.h" #include "src/core/CPP/Validate.h" #include "src/core/helpers/AutoConfiguration.h" #include "src/core/helpers/WindowHelpers.h" #include "src/core/NEON/kernels/softmax/impl/NEON/list.h" #include "src/core/NEON/kernels/softmax/impl/SVE/list.h" #include "src/core/common/Registrars.h" namespace arm_compute { namespace { struct SoftmaxSelectorData { DataType dt; }; using SoftmaxSelectorPtr = std::add_pointer::type; using SoftmaxLogits1DMaxKernelPtr = std::add_pointer::type; using SoftmaxLogits1DKernelPtr = std::add_pointer::type; struct SoftmaxLogits1DKernel { const char *name; const SoftmaxSelectorPtr is_selected; SoftmaxLogits1DKernelPtr ukernel; }; struct SoftmaxLogits1DMaxKernel { const char *name; const SoftmaxSelectorPtr is_selected; SoftmaxLogits1DMaxKernelPtr ukernel; }; static const SoftmaxLogits1DKernel available_logits_1d_kernels[] = { #if defined(__ARM_FEATURE_SVE) { "sve_softmax_logits_1d_float", [](const SoftmaxSelectorData & data) { return (data.dt == DataType::F32); }, REGISTER_FP32_SVE(arm_compute::cpu::sve_softmax_logits_1d_float) }, { "sve_softmax_logits_1d_float", [](const SoftmaxSelectorData & data) { return (data.dt == DataType::F16); }, REGISTER_FP16_SVE(arm_compute::cpu::sve_softmax_logits_1d_float) }, #else /* !defined(__ARM_FEATURE_SVE) */ { "neon_softmax_logits_1d_float", [](const SoftmaxSelectorData & data) { return (data.dt == DataType::F32); }, REGISTER_FP32_NEON(arm_compute::cpu::neon_softmax_logits_1d_float) }, #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) { "neon_softmax_logits_1d_float", [](const SoftmaxSelectorData & data) { return (data.dt == DataType::F16); }, REGISTER_FP16_NEON(arm_compute::cpu::neon_softmax_logits_1d_float) }, #endif /* defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) */ #endif /* defined(__ARM_FEATURE_SVE) */ #if defined(__ARM_FEATURE_SVE2) { "sve_softmax_logits_1d_quantized", [](const SoftmaxSelectorData & data) { return (data.dt == DataType::QASYMM8); }, REGISTER_QASYMM8_SVE(arm_compute::cpu::sve_softmax_logits_1d_quantized) }, { "sve_softmax_logits_1d_quantized", [](const SoftmaxSelectorData & data) { return (data.dt == DataType::QASYMM8_SIGNED); }, REGISTER_QASYMM8_SIGNED_SVE(arm_compute::cpu::sve_softmax_logits_1d_quantized) }, #else /* !defined(__ARM_FEATURE_SVE2) */ { "neon_softmax_logits_1d_quantized", [](const SoftmaxSelectorData & data) { return (data.dt == DataType::QASYMM8); }, REGISTER_QASYMM8_NEON(arm_compute::cpu::neon_softmax_logits_1d_quantized) }, { "neon_softmax_logits_1d_quantized", [](const SoftmaxSelectorData & data) { return (data.dt == DataType::QASYMM8_SIGNED); }, REGISTER_QASYMM8_SIGNED_NEON(arm_compute::cpu::neon_softmax_logits_1d_quantized) }, #endif /* defined(__ARM_FEATURE_SVE2) */ }; static const SoftmaxLogits1DMaxKernel available_logits_1d_max_kernels[] = { #if defined(__ARM_FEATURE_SVE) { "sve_logits_1d_max", [](const SoftmaxSelectorData & data) { return (data.dt == DataType::F32); }, REGISTER_FP32_SVE(arm_compute::cpu::sve_logits_1d_max) }, { "sve_logits_1d_max", [](const SoftmaxSelectorData & data) { return (data.dt == DataType::F16); }, REGISTER_FP16_SVE(arm_compute::cpu::sve_logits_1d_max) }, { "sve_logits_1d_max", [](const SoftmaxSelectorData & data) { return (data.dt == DataType::QASYMM8); }, REGISTER_QASYMM8_SVE(arm_compute::cpu::sve_logits_1d_max) }, { "sve_logits_1d_max", [](const SoftmaxSelectorData & data) { return (data.dt == DataType::QASYMM8_SIGNED); }, REGISTER_QASYMM8_SIGNED_SVE(arm_compute::cpu::sve_logits_1d_max) }, #else /* !defined(__ARM_FEATURE_SVE) */ { "neon_logits_1d_max", [](const SoftmaxSelectorData & data) { return (data.dt == DataType::F32); }, REGISTER_FP32_NEON(arm_compute::cpu::neon_logits_1d_max) }, #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) { "neon_logits_1d_max", [](const SoftmaxSelectorData & data) { return (data.dt == DataType::F16); }, REGISTER_FP16_NEON(arm_compute::cpu::neon_logits_1d_max) }, #endif /* defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) */ { "neon_logits_1d_max", [](const SoftmaxSelectorData & data) { return (data.dt == DataType::QASYMM8); }, REGISTER_QASYMM8_NEON(arm_compute::cpu::neon_logits_1d_max) }, { "neon_logits_1d_max", [](const SoftmaxSelectorData & data) { return (data.dt == DataType::QASYMM8_SIGNED); }, REGISTER_QASYMM8_SIGNED_NEON(arm_compute::cpu::neon_logits_1d_max) }, #endif /* defined(__ARM_FEATURE_SVE) */ }; const SoftmaxLogits1DKernel *get_implementation_logits(const SoftmaxSelectorData &data) { for(const auto &uk : available_logits_1d_kernels) { if(uk.is_selected({ data.dt })) { return &uk; } } return nullptr; } const SoftmaxLogits1DMaxKernel *get_implementation_logits_max(const SoftmaxSelectorData &data) { for(const auto &uk : available_logits_1d_max_kernels) { if(uk.is_selected({ data.dt })) { return &uk; } } return nullptr; } Status validate_arguments_logits_1d_max(const ITensorInfo &input, const ITensorInfo &output) { ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(&input); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&input, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::F16, DataType::F32); // Validate in case of configured output if(output.total_size() != 0) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&input, &output); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_QUANTIZATION_INFO(&input, &output); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(output.tensor_shape(), TensorShape(input.tensor_shape()).set(0, 1)); } return Status{}; } } // namespace NELogits1DMaxKernel::NELogits1DMaxKernel() : _border_size() { } BorderSize NELogits1DMaxKernel::border_size() const { return _border_size; } void NELogits1DMaxKernel::configure(const ITensor *input, ITensor *output) { ARM_COMPUTE_ERROR_ON_NULLPTR(input, output); ARM_COMPUTE_ERROR_ON_NULLPTR(input->info(), output->info()); // Perform validation step ARM_COMPUTE_ERROR_THROW_ON(validate_arguments_logits_1d_max(*input->info(), *output->info())); // Configure kernel window // Softmax across the x dimension const TensorShape output_shape = TensorShape(input->info()->tensor_shape()).set(0, 1); // Output auto initialization if not yet initialized auto_init_if_empty(*output->info(), output_shape, 1, input->info()->data_type(), input->info()->quantization_info()); Window win = calculate_max_window(*input->info(), Steps()); Coordinates coord; coord.set_num_dimensions(output->info()->num_dimensions()); output->info()->set_valid_region(ValidRegion(coord, output->info()->tensor_shape())); _input = input; _output = output; const int input_width = input->info()->valid_region().shape.x(); const int num_elems_processed_per_iteration = 16U / data_size_from_type(input->info()->data_type()); const int num_elems_read_per_iteration = ceil_to_multiple(input_width, num_elems_processed_per_iteration); _border_size = BorderSize(0, num_elems_read_per_iteration - input_width, 0, 0); INEKernel::configure(win); } Status NELogits1DMaxKernel::validate(const ITensorInfo *input, const ITensorInfo *output) { ARM_COMPUTE_ERROR_ON_NULLPTR(input, output); ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_logits_1d_max(*input, *output)); return Status{}; } void NELogits1DMaxKernel::run(const Window &window, const ThreadInfo &info) { ARM_COMPUTE_UNUSED(info); ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window); const auto *uk = get_implementation_logits_max(SoftmaxSelectorData{ _input->info()->data_type() }); uk->ukernel(_input, _output, window); } namespace { Status validate_arguments_logits_softmax(const ITensorInfo &input, const ITensorInfo &max, const ITensorInfo &output, const float beta, const ITensorInfo &tmp, bool is_log) { ARM_COMPUTE_UNUSED(beta); // Check input ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(&input); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&input, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::F16, DataType::F32); const bool is_quantized_asymmetric = is_data_type_quantized_asymmetric(input.data_type()); // Check max ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&input, &max); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(TensorShape(input.tensor_shape()).set(0, 1), max.tensor_shape()); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_QUANTIZATION_INFO(&input, &max); // Check output if configured if(output.total_size() != 0) { const QuantizationInfo output_quantization = is_quantized_asymmetric ? arm_compute::get_softmax_output_quantization_info(input.data_type(), is_log) : output.quantization_info(); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&input, &output); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(&input, &output); ARM_COMPUTE_RETURN_ERROR_ON(output.quantization_info() != output_quantization); } // Check tmp if configured if(tmp.total_size() != 0) { const DataType tmp_data_type = is_quantized_asymmetric ? DataType::F32 : input.data_type(); ARM_COMPUTE_RETURN_ERROR_ON(tmp.data_type() != tmp_data_type); // We could potentially reduce tmp memory if we could predict or make an assumption // on the maximum number of threads that will run in parallel. ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(&input, &tmp); } return Status{}; } } // namespace template NELogits1DSoftmaxKernel::NELogits1DSoftmaxKernel() : _input(nullptr), _max(nullptr), _output(nullptr), _beta(1.0f), _tmp(nullptr) { } template void NELogits1DSoftmaxKernel::configure(const ITensor *input, const ITensor *max, ITensor *output, const float beta, ITensor *tmp) { ARM_COMPUTE_ERROR_ON_NULLPTR(input, max, output, tmp); ARM_COMPUTE_ERROR_ON_NULLPTR(input->info(), max->info(), output->info(), tmp->info()); // Perform validation step ARM_COMPUTE_ERROR_THROW_ON(validate_arguments_logits_softmax(*input->info(), *max->info(), *output->info(), beta, *tmp->info(), IS_LOG)); // Configure kernel window const bool is_quantized_asymmetric = is_data_type_quantized_asymmetric(input->info()->data_type()); // Output auto initialization if not yet initialized const QuantizationInfo output_quantization = is_quantized_asymmetric ? arm_compute::get_softmax_output_quantization_info(input->info()->data_type(), IS_LOG) : output->info()->quantization_info(); auto_init_if_empty(*output->info(), TensorInfo(*input->info()).set_quantization_info(output_quantization).reset_padding()); // Tmp auto initialization if not yet initialized const DataType tmp_data_type = is_quantized_asymmetric ? DataType::F32 : input->info()->data_type(); auto_init_if_empty(*tmp->info(), TensorInfo(*input->info()).set_data_type(tmp_data_type).reset_padding()); // Configure kernel window Window win = calculate_max_window(*max->info(), Steps()); Coordinates coord; coord.set_num_dimensions(output->info()->num_dimensions()); output->info()->set_valid_region(ValidRegion(coord, output->info()->tensor_shape())); _input = input; _max = max; _output = output; _beta = beta; _tmp = tmp; INEKernel::configure(win); } template Status NELogits1DSoftmaxKernel::validate(const ITensorInfo *input, const ITensorInfo *max, const ITensorInfo *output, const float beta, const ITensorInfo *tmp) { ARM_COMPUTE_ERROR_ON_NULLPTR(input, max, output, tmp); ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_logits_softmax(*input, *max, *output, beta, *tmp, IS_LOG)); return Status{}; } template void NELogits1DSoftmaxKernel::run(const Window &window, const ThreadInfo &info) { ARM_COMPUTE_UNUSED(info); ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window); const unsigned int num_elems_processed_per_iteration = _input->info()->valid_region().shape.x(); const unsigned int tmp_size_for_thread = _tmp->info()->element_size() * num_elems_processed_per_iteration; ARM_COMPUTE_ERROR_ON(_tmp->info()->total_size() < (info.num_threads * tmp_size_for_thread)); void *tmp_for_thread = _tmp->buffer() + (info.thread_id * tmp_size_for_thread); const auto *uk = get_implementation_logits(SoftmaxSelectorData{ _input->info()->data_type() }); uk->ukernel(_input, _max, tmp_for_thread, _output, _beta, IS_LOG, window); } template class NELogits1DSoftmaxKernel; template class NELogits1DSoftmaxKernel; } // namespace arm_compute