/* * Copyright (c) 2016, 2017 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/NEON/kernels/NEScaleKernel.h" #include "arm_compute/core/AccessWindowStatic.h" #include "arm_compute/core/Coordinates.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/ITensor.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/Window.h" #include #include #include using namespace arm_compute; NEScaleKernel::NEScaleKernel() : _func(nullptr), _offsets(nullptr), _dx(nullptr), _dy(nullptr), _input(nullptr), _output(nullptr) { } BorderSize NEScaleKernel::border_size() const { return BorderSize(1); } void NEScaleKernel::configure(const ITensor *input, const ITensor *dx, const ITensor *dy, const ITensor *offsets, ITensor *output, InterpolationPolicy policy, bool border_undefined) { ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::U8, DataType::S16, DataType::F32); ARM_COMPUTE_ERROR_ON_NULLPTR(output); ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, output); ARM_COMPUTE_ERROR_ON(output == input); if(policy == InterpolationPolicy::NEAREST_NEIGHBOR) { ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(offsets, 1, DataType::S32); } if(policy == InterpolationPolicy::BILINEAR) { ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(offsets, 1, DataType::S32); ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(dx, 1, DataType::F32); ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(dy, 1, DataType::F32); } ARM_COMPUTE_ERROR_ON(output->info()->dimension(0) == 0); ARM_COMPUTE_ERROR_ON(output->info()->dimension(1) == 0); for(size_t i = 2; i < Coordinates::num_max_dimensions; ++i) { ARM_COMPUTE_ERROR_ON(input->info()->dimension(i) != output->info()->dimension(i)); } _input = input; _output = output; _offsets = offsets; _dx = dx; _dy = dy; /* Compute the ratio between source width/height and destination width/height */ const auto wr = static_cast(input->info()->dimension(0)) / static_cast(output->info()->dimension(0)); const auto hr = static_cast(input->info()->dimension(1)) / static_cast(output->info()->dimension(1)); /* Area interpolation behaves as Nearest Neighbour in case of up-sampling */ if(policy == InterpolationPolicy::AREA && wr <= 1.f && hr <= 1.f) { policy = InterpolationPolicy::NEAREST_NEIGHBOR; } switch(policy) { case InterpolationPolicy::NEAREST_NEIGHBOR: { _func = &NEScaleKernel::scale_nearest; break; } case InterpolationPolicy::BILINEAR: { ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(_dx, 1, DataType::F32); ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(_dy, 1, DataType::F32); _func = &NEScaleKernel::scale_bilinear; break; } case InterpolationPolicy::AREA: { _func = &NEScaleKernel::scale_area; break; } default: ARM_COMPUTE_ERROR("Unsupported interpolation mode"); } constexpr unsigned int num_elems_processed_per_iteration = 16; // Configure kernel window Window win = calculate_max_window(*output->info(), Steps(num_elems_processed_per_iteration)); const ValidRegion &input_valid_region = input->info()->valid_region(); // Reads can occur within the valid region of the input AccessWindowStatic input_access(input->info(), input_valid_region.anchor[0] - border_size().left, input_valid_region.anchor[1] - border_size().top, input_valid_region.anchor[0] + input_valid_region.shape[0] + border_size().right, input_valid_region.anchor[1] + input_valid_region.shape[1] + border_size().bottom); AccessWindowHorizontal offsets_access(offsets == nullptr ? nullptr : offsets->info(), 0, num_elems_processed_per_iteration); AccessWindowHorizontal dx_access(dx == nullptr ? nullptr : dx->info(), 0, num_elems_processed_per_iteration); AccessWindowHorizontal dy_access(dy == nullptr ? nullptr : dy->info(), 0, num_elems_processed_per_iteration); AccessWindowHorizontal output_access(output->info(), 0, num_elems_processed_per_iteration); update_window_and_padding(win, input_access, offsets_access, dx_access, dy_access, output_access); output_access.set_valid_region(win, calculate_valid_region_scale(*(input->info()), output->info()->tensor_shape(), policy, border_size(), border_undefined)); INEKernel::configure(win); } void NEScaleKernel::scale_nearest(const Window &window) { const size_t input_stride = _input->info()->strides_in_bytes()[1]; // Compute the ratio between source height and destination height const auto hr = static_cast(_input->info()->dimension(1)) / static_cast(_output->info()->dimension(1)); // Don't increment in X and Y direction for the input tensor // A pointer to the start of this plane is needed as base for the precomputed offsets Window win_in(window); win_in.set(Window::DimX, Window::Dimension(0, 0, 0)); win_in.set(Window::DimY, Window::Dimension(0, 0, 0)); Window win_off; win_off.set(Window::DimX, window[Window::DimX]); win_off.set(Window::DimY, window[Window::DimY]); for(size_t d = Window::DimZ; d < _offsets->info()->num_dimensions(); ++d) { win_off.set(d, Window::Dimension(0, 0, 0)); } Iterator in(_input, win_in); Iterator out(_output, window); Iterator offsets(_offsets, win_off); switch(_input->info()->data_type()) { case DataType::U8: { uint8x16_t tmp = vdupq_n_u8(0); execute_window_loop(window, [&](const Coordinates & id) { const auto offsets_ptr = reinterpret_cast(offsets.ptr()); const uint8_t *const in_ptr = in.ptr(); const int in_yi = std::floor((id.y() + 0.5f) * hr); const int in_yi_clamped = std::min(static_cast(_input->info()->dimension(1)), std::max(in_yi, -1)); ARM_COMPUTE_ERROR_ON(in_yi_clamped < -1 || in_yi_clamped > static_cast(_input->info()->dimension(1))); const int offset_row = in_yi_clamped * input_stride; tmp = vsetq_lane_u8(in_ptr[offsets_ptr[0] + offset_row], tmp, 0); tmp = vsetq_lane_u8(in_ptr[offsets_ptr[1] + offset_row], tmp, 1); tmp = vsetq_lane_u8(in_ptr[offsets_ptr[2] + offset_row], tmp, 2); tmp = vsetq_lane_u8(in_ptr[offsets_ptr[3] + offset_row], tmp, 3); tmp = vsetq_lane_u8(in_ptr[offsets_ptr[4] + offset_row], tmp, 4); tmp = vsetq_lane_u8(in_ptr[offsets_ptr[5] + offset_row], tmp, 5); tmp = vsetq_lane_u8(in_ptr[offsets_ptr[6] + offset_row], tmp, 6); tmp = vsetq_lane_u8(in_ptr[offsets_ptr[7] + offset_row], tmp, 7); tmp = vsetq_lane_u8(in_ptr[offsets_ptr[8] + offset_row], tmp, 8); tmp = vsetq_lane_u8(in_ptr[offsets_ptr[9] + offset_row], tmp, 9); tmp = vsetq_lane_u8(in_ptr[offsets_ptr[10] + offset_row], tmp, 10); tmp = vsetq_lane_u8(in_ptr[offsets_ptr[11] + offset_row], tmp, 11); tmp = vsetq_lane_u8(in_ptr[offsets_ptr[12] + offset_row], tmp, 12); tmp = vsetq_lane_u8(in_ptr[offsets_ptr[13] + offset_row], tmp, 13); tmp = vsetq_lane_u8(in_ptr[offsets_ptr[14] + offset_row], tmp, 14); tmp = vsetq_lane_u8(in_ptr[offsets_ptr[15] + offset_row], tmp, 15); vst1q_u8(out.ptr(), tmp); }, in, offsets, out); break; } case DataType::S16: { int16x8x2_t tmp = { { vdupq_n_s16(0), vdupq_n_s16(0) } }; execute_window_loop(window, [&](const Coordinates & id) { const auto offsets_ptr = reinterpret_cast(offsets.ptr()); const int in_yi = (id.y() + 0.5f) * hr; const int offset_row = in_yi * input_stride; tmp.val[0] = vsetq_lane_s16(*reinterpret_cast(in.ptr() + offsets_ptr[0] + offset_row), tmp.val[0], 0); tmp.val[0] = vsetq_lane_s16(*reinterpret_cast(in.ptr() + offsets_ptr[2] + offset_row), tmp.val[0], 1); tmp.val[0] = vsetq_lane_s16(*reinterpret_cast(in.ptr() + offsets_ptr[4] + offset_row), tmp.val[0], 2); tmp.val[0] = vsetq_lane_s16(*reinterpret_cast(in.ptr() + offsets_ptr[6] + offset_row), tmp.val[0], 3); tmp.val[0] = vsetq_lane_s16(*reinterpret_cast(in.ptr() + offsets_ptr[8] + offset_row), tmp.val[0], 4); tmp.val[0] = vsetq_lane_s16(*reinterpret_cast(in.ptr() + offsets_ptr[10] + offset_row), tmp.val[0], 5); tmp.val[0] = vsetq_lane_s16(*reinterpret_cast(in.ptr() + offsets_ptr[12] + offset_row), tmp.val[0], 6); tmp.val[0] = vsetq_lane_s16(*reinterpret_cast(in.ptr() + offsets_ptr[14] + offset_row), tmp.val[0], 7); tmp.val[1] = vsetq_lane_s16(*reinterpret_cast(in.ptr() + offsets_ptr[1] + offset_row), tmp.val[1], 0); tmp.val[1] = vsetq_lane_s16(*reinterpret_cast(in.ptr() + offsets_ptr[3] + offset_row), tmp.val[1], 1); tmp.val[1] = vsetq_lane_s16(*reinterpret_cast(in.ptr() + offsets_ptr[5] + offset_row), tmp.val[1], 2); tmp.val[1] = vsetq_lane_s16(*reinterpret_cast(in.ptr() + offsets_ptr[7] + offset_row), tmp.val[1], 3); tmp.val[1] = vsetq_lane_s16(*reinterpret_cast(in.ptr() + offsets_ptr[9] + offset_row), tmp.val[1], 4); tmp.val[1] = vsetq_lane_s16(*reinterpret_cast(in.ptr() + offsets_ptr[11] + offset_row), tmp.val[1], 5); tmp.val[1] = vsetq_lane_s16(*reinterpret_cast(in.ptr() + offsets_ptr[13] + offset_row), tmp.val[1], 6); tmp.val[1] = vsetq_lane_s16(*reinterpret_cast(in.ptr() + offsets_ptr[15] + offset_row), tmp.val[1], 7); vst2q_s16(reinterpret_cast(out.ptr()), tmp); }, in, offsets, out); break; } case DataType::F32: { float32x4x4_t tmp = { { vdupq_n_f32(0), vdupq_n_f32(0), vdupq_n_f32(0), vdupq_n_f32(0) } }; execute_window_loop(window, [&](const Coordinates & id) { const auto offsets_ptr = reinterpret_cast(offsets.ptr()); const int in_yi = (id.y() + 0.5f) * hr; const int offset_row = in_yi * input_stride; tmp.val[0] = vsetq_lane_f32(*reinterpret_cast(in.ptr() + offsets_ptr[0] + offset_row), tmp.val[0], 0); tmp.val[0] = vsetq_lane_f32(*reinterpret_cast(in.ptr() + offsets_ptr[4] + offset_row), tmp.val[0], 1); tmp.val[0] = vsetq_lane_f32(*reinterpret_cast(in.ptr() + offsets_ptr[8] + offset_row), tmp.val[0], 2); tmp.val[0] = vsetq_lane_f32(*reinterpret_cast(in.ptr() + offsets_ptr[12] + offset_row), tmp.val[0], 3); tmp.val[1] = vsetq_lane_f32(*reinterpret_cast(in.ptr() + offsets_ptr[1] + offset_row), tmp.val[1], 0); tmp.val[1] = vsetq_lane_f32(*reinterpret_cast(in.ptr() + offsets_ptr[5] + offset_row), tmp.val[1], 1); tmp.val[1] = vsetq_lane_f32(*reinterpret_cast(in.ptr() + offsets_ptr[9] + offset_row), tmp.val[1], 2); tmp.val[1] = vsetq_lane_f32(*reinterpret_cast(in.ptr() + offsets_ptr[13] + offset_row), tmp.val[1], 3); tmp.val[2] = vsetq_lane_f32(*reinterpret_cast(in.ptr() + offsets_ptr[2] + offset_row), tmp.val[2], 0); tmp.val[2] = vsetq_lane_f32(*reinterpret_cast(in.ptr() + offsets_ptr[6] + offset_row), tmp.val[2], 1); tmp.val[2] = vsetq_lane_f32(*reinterpret_cast(in.ptr() + offsets_ptr[10] + offset_row), tmp.val[2], 2); tmp.val[2] = vsetq_lane_f32(*reinterpret_cast(in.ptr() + offsets_ptr[14] + offset_row), tmp.val[2], 3); tmp.val[3] = vsetq_lane_f32(*reinterpret_cast(in.ptr() + offsets_ptr[3] + offset_row), tmp.val[3], 0); tmp.val[3] = vsetq_lane_f32(*reinterpret_cast(in.ptr() + offsets_ptr[7] + offset_row), tmp.val[3], 1); tmp.val[3] = vsetq_lane_f32(*reinterpret_cast(in.ptr() + offsets_ptr[11] + offset_row), tmp.val[3], 2); tmp.val[3] = vsetq_lane_f32(*reinterpret_cast(in.ptr() + offsets_ptr[15] + offset_row), tmp.val[3], 3); vst4q_f32(reinterpret_cast(out.ptr()), tmp); }, in, offsets, out); break; } default: ARM_COMPUTE_ERROR("Not supported"); break; } } void NEScaleKernel::scale_bilinear(const Window &window) { ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(_input, 1, DataType::U8, DataType::S16, DataType::F32); // Compute the ratio between source height and destination height const auto hr = static_cast(_input->info()->dimension(1)) / static_cast(_output->info()->dimension(1)); // Don't increment in X and Y direction for the input tensor // A pointer to the start of this plane is needed as base for the precomputed offsets Window win_in(window); win_in.set(Window::DimX, Window::Dimension(0, 0, 0)); win_in.set(Window::DimY, Window::Dimension(0, 0, 0)); Window win_off; win_off.set(Window::DimX, window.x()); win_off.set(Window::DimY, window.y()); for(size_t d = Window::DimZ; d < _offsets->info()->num_dimensions(); ++d) { win_off.set(d, Window::Dimension(0, 0, 0)); } Iterator in(_input, win_in); Iterator out(_output, window); Iterator offsets(_offsets, win_off); Iterator dx(_dx, win_off); Iterator dy(_dy, win_off); /* Input image stride */ const size_t in_stide_in_bytes = _input->info()->strides_in_bytes()[1]; const size_t in_stride = in_stide_in_bytes / _input->info()->element_size(); switch(_input->info()->data_type()) { case DataType::U8: { execute_window_loop(window, [&](const Coordinates & id) { const auto offsets_ptr = reinterpret_cast(offsets.ptr()); const auto dx_ptr = reinterpret_cast(dx.ptr()); const auto dy_ptr = reinterpret_cast(dy.ptr()); const auto in_ptr = reinterpret_cast(in.ptr()); const int in_yi = std::floor((id.y() + 0.5f) * hr - 0.5f); const int offset_row = in_yi * in_stide_in_bytes; uint8x8_t tmp0 = vdup_n_u8(0); tmp0 = vset_lane_u8(delta_bilinear_c1(&in_ptr[offsets_ptr[0] + offset_row], in_stride, dx_ptr[0], dy_ptr[0]), tmp0, 0); tmp0 = vset_lane_u8(delta_bilinear_c1(&in_ptr[offsets_ptr[1] + offset_row], in_stride, dx_ptr[1], dy_ptr[1]), tmp0, 1); tmp0 = vset_lane_u8(delta_bilinear_c1(&in_ptr[offsets_ptr[2] + offset_row], in_stride, dx_ptr[2], dy_ptr[2]), tmp0, 2); tmp0 = vset_lane_u8(delta_bilinear_c1(&in_ptr[offsets_ptr[3] + offset_row], in_stride, dx_ptr[3], dy_ptr[3]), tmp0, 3); tmp0 = vset_lane_u8(delta_bilinear_c1(&in_ptr[offsets_ptr[4] + offset_row], in_stride, dx_ptr[4], dy_ptr[4]), tmp0, 4); tmp0 = vset_lane_u8(delta_bilinear_c1(&in_ptr[offsets_ptr[5] + offset_row], in_stride, dx_ptr[5], dy_ptr[5]), tmp0, 5); tmp0 = vset_lane_u8(delta_bilinear_c1(&in_ptr[offsets_ptr[6] + offset_row], in_stride, dx_ptr[6], dy_ptr[6]), tmp0, 6); tmp0 = vset_lane_u8(delta_bilinear_c1(&in_ptr[offsets_ptr[7] + offset_row], in_stride, dx_ptr[7], dy_ptr[7]), tmp0, 7); uint8x8_t tmp1 = vdup_n_u8(0); tmp1 = vset_lane_u8(delta_bilinear_c1(&in_ptr[offsets_ptr[8] + offset_row], in_stride, dx_ptr[8], dy_ptr[8]), tmp1, 0); tmp1 = vset_lane_u8(delta_bilinear_c1(&in_ptr[offsets_ptr[9] + offset_row], in_stride, dx_ptr[9], dy_ptr[9]), tmp1, 1); tmp1 = vset_lane_u8(delta_bilinear_c1(&in_ptr[offsets_ptr[10] + offset_row], in_stride, dx_ptr[10], dy_ptr[10]), tmp1, 2); tmp1 = vset_lane_u8(delta_bilinear_c1(&in_ptr[offsets_ptr[11] + offset_row], in_stride, dx_ptr[11], dy_ptr[11]), tmp1, 3); tmp1 = vset_lane_u8(delta_bilinear_c1(&in_ptr[offsets_ptr[12] + offset_row], in_stride, dx_ptr[12], dy_ptr[12]), tmp1, 4); tmp1 = vset_lane_u8(delta_bilinear_c1(&in_ptr[offsets_ptr[13] + offset_row], in_stride, dx_ptr[13], dy_ptr[13]), tmp1, 5); tmp1 = vset_lane_u8(delta_bilinear_c1(&in_ptr[offsets_ptr[14] + offset_row], in_stride, dx_ptr[14], dy_ptr[14]), tmp1, 6); tmp1 = vset_lane_u8(delta_bilinear_c1(&in_ptr[offsets_ptr[15] + offset_row], in_stride, dx_ptr[15], dy_ptr[15]), tmp1, 7); vst1q_u8(out.ptr(), vcombine_u8(tmp0, tmp1)); }, in, offsets, dx, dy, out); break; } case DataType::S16: { execute_window_loop(window, [&](const Coordinates & id) { const auto offsets_ptr = reinterpret_cast(offsets.ptr()); const auto dx_ptr = reinterpret_cast(dx.ptr()); const auto dy_ptr = reinterpret_cast(dy.ptr()); const int in_yi = std::floor((id.y() + 0.5f) * hr - 0.5f); const int offset_row = in_yi * in_stide_in_bytes; int16x8x2_t tmp = { { vdupq_n_s16(0), vdupq_n_s16(0) } }; tmp.val[0] = vsetq_lane_s16(delta_bilinear_c1(reinterpret_cast(in.ptr() + offsets_ptr[0] + offset_row), in_stride, dx_ptr[0], dy_ptr[0]), tmp.val[0], 0); tmp.val[0] = vsetq_lane_s16(delta_bilinear_c1(reinterpret_cast(in.ptr() + offsets_ptr[2] + offset_row), in_stride, dx_ptr[2], dy_ptr[2]), tmp.val[0], 1); tmp.val[0] = vsetq_lane_s16(delta_bilinear_c1(reinterpret_cast(in.ptr() + offsets_ptr[4] + offset_row), in_stride, dx_ptr[4], dy_ptr[4]), tmp.val[0], 2); tmp.val[0] = vsetq_lane_s16(delta_bilinear_c1(reinterpret_cast(in.ptr() + offsets_ptr[6] + offset_row), in_stride, dx_ptr[6], dy_ptr[6]), tmp.val[0], 3); tmp.val[0] = vsetq_lane_s16(delta_bilinear_c1(reinterpret_cast(in.ptr() + offsets_ptr[8] + offset_row), in_stride, dx_ptr[8], dy_ptr[8]), tmp.val[0], 4); tmp.val[0] = vsetq_lane_s16(delta_bilinear_c1(reinterpret_cast(in.ptr() + offsets_ptr[10] + offset_row), in_stride, dx_ptr[10], dy_ptr[10]), tmp.val[0], 5); tmp.val[0] = vsetq_lane_s16(delta_bilinear_c1(reinterpret_cast(in.ptr() + offsets_ptr[12] + offset_row), in_stride, dx_ptr[12], dy_ptr[12]), tmp.val[0], 6); tmp.val[0] = vsetq_lane_s16(delta_bilinear_c1(reinterpret_cast(in.ptr() + offsets_ptr[14] + offset_row), in_stride, dx_ptr[14], dy_ptr[14]), tmp.val[0], 7); tmp.val[1] = vsetq_lane_s16(delta_bilinear_c1(reinterpret_cast(in.ptr() + offsets_ptr[1] + offset_row), in_stride, dx_ptr[1], dy_ptr[1]), tmp.val[1], 0); tmp.val[1] = vsetq_lane_s16(delta_bilinear_c1(reinterpret_cast(in.ptr() + offsets_ptr[3] + offset_row), in_stride, dx_ptr[3], dy_ptr[3]), tmp.val[1], 1); tmp.val[1] = vsetq_lane_s16(delta_bilinear_c1(reinterpret_cast(in.ptr() + offsets_ptr[5] + offset_row), in_stride, dx_ptr[5], dy_ptr[5]), tmp.val[1], 2); tmp.val[1] = vsetq_lane_s16(delta_bilinear_c1(reinterpret_cast(in.ptr() + offsets_ptr[7] + offset_row), in_stride, dx_ptr[7], dy_ptr[7]), tmp.val[1], 3); tmp.val[1] = vsetq_lane_s16(delta_bilinear_c1(reinterpret_cast(in.ptr() + offsets_ptr[9] + offset_row), in_stride, dx_ptr[9], dy_ptr[9]), tmp.val[1], 4); tmp.val[1] = vsetq_lane_s16(delta_bilinear_c1(reinterpret_cast(in.ptr() + offsets_ptr[11] + offset_row), in_stride, dx_ptr[11], dy_ptr[11]), tmp.val[1], 5); tmp.val[1] = vsetq_lane_s16(delta_bilinear_c1(reinterpret_cast(in.ptr() + offsets_ptr[13] + offset_row), in_stride, dx_ptr[13], dy_ptr[13]), tmp.val[1], 6); tmp.val[1] = vsetq_lane_s16(delta_bilinear_c1(reinterpret_cast(in.ptr() + offsets_ptr[15] + offset_row), in_stride, dx_ptr[15], dy_ptr[15]), tmp.val[1], 7); vst2q_s16(reinterpret_cast(out.ptr()), tmp); }, in, offsets, dx, dy, out); break; } case DataType::F32: { execute_window_loop(window, [&](const Coordinates & id) { const auto offsets_ptr = reinterpret_cast(offsets.ptr()); const auto dx_ptr = reinterpret_cast(dx.ptr()); const auto dy_ptr = reinterpret_cast(dy.ptr()); const int in_yi = std::floor((id.y() + 0.5f) * hr - 0.5f); const int offset_row = in_yi * in_stide_in_bytes; float32x4x4_t tmp = { { vdupq_n_f32(0), vdupq_n_f32(0), vdupq_n_f32(0), vdupq_n_f32(0) } }; tmp.val[0] = vsetq_lane_f32(delta_bilinear_c1(reinterpret_cast(in.ptr() + offsets_ptr[0] + offset_row), in_stride, dx_ptr[0], dy_ptr[0]), tmp.val[0], 0); tmp.val[0] = vsetq_lane_f32(delta_bilinear_c1(reinterpret_cast(in.ptr() + offsets_ptr[4] + offset_row), in_stride, dx_ptr[4], dy_ptr[4]), tmp.val[0], 1); tmp.val[0] = vsetq_lane_f32(delta_bilinear_c1(reinterpret_cast(in.ptr() + offsets_ptr[8] + offset_row), in_stride, dx_ptr[8], dy_ptr[8]), tmp.val[0], 2); tmp.val[0] = vsetq_lane_f32(delta_bilinear_c1(reinterpret_cast(in.ptr() + offsets_ptr[12] + offset_row), in_stride, dx_ptr[12], dy_ptr[12]), tmp.val[0], 3); tmp.val[1] = vsetq_lane_f32(delta_bilinear_c1(reinterpret_cast(in.ptr() + offsets_ptr[1] + offset_row), in_stride, dx_ptr[1], dy_ptr[1]), tmp.val[1], 0); tmp.val[1] = vsetq_lane_f32(delta_bilinear_c1(reinterpret_cast(in.ptr() + offsets_ptr[5] + offset_row), in_stride, dx_ptr[5], dy_ptr[5]), tmp.val[1], 1); tmp.val[1] = vsetq_lane_f32(delta_bilinear_c1(reinterpret_cast(in.ptr() + offsets_ptr[9] + offset_row), in_stride, dx_ptr[9], dy_ptr[9]), tmp.val[1], 2); tmp.val[1] = vsetq_lane_f32(delta_bilinear_c1(reinterpret_cast(in.ptr() + offsets_ptr[13] + offset_row), in_stride, dx_ptr[13], dy_ptr[13]), tmp.val[1], 3); tmp.val[2] = vsetq_lane_f32(delta_bilinear_c1(reinterpret_cast(in.ptr() + offsets_ptr[2] + offset_row), in_stride, dx_ptr[2], dy_ptr[2]), tmp.val[2], 0); tmp.val[2] = vsetq_lane_f32(delta_bilinear_c1(reinterpret_cast(in.ptr() + offsets_ptr[6] + offset_row), in_stride, dx_ptr[6], dy_ptr[6]), tmp.val[2], 1); tmp.val[2] = vsetq_lane_f32(delta_bilinear_c1(reinterpret_cast(in.ptr() + offsets_ptr[10] + offset_row), in_stride, dx_ptr[10], dy_ptr[10]), tmp.val[2], 2); tmp.val[2] = vsetq_lane_f32(delta_bilinear_c1(reinterpret_cast(in.ptr() + offsets_ptr[14] + offset_row), in_stride, dx_ptr[14], dy_ptr[14]), tmp.val[2], 3); tmp.val[3] = vsetq_lane_f32(delta_bilinear_c1(reinterpret_cast(in.ptr() + offsets_ptr[3] + offset_row), in_stride, dx_ptr[3], dy_ptr[3]), tmp.val[3], 0); tmp.val[3] = vsetq_lane_f32(delta_bilinear_c1(reinterpret_cast(in.ptr() + offsets_ptr[7] + offset_row), in_stride, dx_ptr[7], dy_ptr[7]), tmp.val[3], 1); tmp.val[3] = vsetq_lane_f32(delta_bilinear_c1(reinterpret_cast(in.ptr() + offsets_ptr[11] + offset_row), in_stride, dx_ptr[11], dy_ptr[11]), tmp.val[3], 2); tmp.val[3] = vsetq_lane_f32(delta_bilinear_c1(reinterpret_cast(in.ptr() + offsets_ptr[15] + offset_row), in_stride, dx_ptr[15], dy_ptr[15]), tmp.val[3], 3); vst4q_f32(reinterpret_cast(out.ptr()), tmp); }, in, offsets, dx, dy, out); break; } default: ARM_COMPUTE_ERROR("Not supported"); break; } } void NEScaleKernel::scale_area(const Window &window) { ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(_input, 1, DataType::U8); // Don't increment in X and Y direction for the input tensor // A pointer to the start of this plane is needed as base for the precomputed offsets Window win_in(window); win_in.set(Window::DimX, Window::Dimension(0, 0, 0)); win_in.set(Window::DimY, Window::Dimension(0, 0, 0)); Iterator in(_input, win_in); Iterator out(_output, window); const auto wr = static_cast(_input->info()->dimension(0)) / static_cast(_output->info()->dimension(0)); const auto hr = static_cast(_input->info()->dimension(1)) / static_cast(_output->info()->dimension(1)); const auto w = _input->info()->dimension(0); const auto h = _input->info()->dimension(1); const size_t in_stride = _input->info()->strides_in_bytes()[1]; execute_window_loop(window, [&](const Coordinates & id) { const auto in_ptr = reinterpret_cast(in.ptr()); uint8x8_t tmp0 = vdup_n_u8(0); tmp0 = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x(), id.y()), tmp0, 0); tmp0 = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 1, id.y()), tmp0, 1); tmp0 = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 2, id.y()), tmp0, 2); tmp0 = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 3, id.y()), tmp0, 3); tmp0 = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 4, id.y()), tmp0, 4); tmp0 = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 5, id.y()), tmp0, 5); tmp0 = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 6, id.y()), tmp0, 6); tmp0 = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 7, id.y()), tmp0, 7); uint8x8_t tmp1 = vdup_n_u8(0); tmp1 = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 8, id.y()), tmp1, 0); tmp1 = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 9, id.y()), tmp1, 1); tmp1 = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 10, id.y()), tmp1, 2); tmp1 = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 11, id.y()), tmp1, 3); tmp1 = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 12, id.y()), tmp1, 4); tmp1 = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 13, id.y()), tmp1, 5); tmp1 = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 14, id.y()), tmp1, 6); tmp1 = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 15, id.y()), tmp1, 7); vst1q_u8(out.ptr(), vcombine_u8(tmp0, tmp1)); }, in, out); } void NEScaleKernel::run(const Window &window, const ThreadInfo &info) { ARM_COMPUTE_UNUSED(info); ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window); ARM_COMPUTE_ERROR_ON(_func == nullptr); (this->*_func)(window); }