/* * Copyright (c) 2016, 2017 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/NEON/kernels/NEScaleKernel.h" #include "arm_compute/core/AccessWindowStatic.h" #include "arm_compute/core/Coordinates.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/ITensor.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/Window.h" #include #include #include using namespace arm_compute; NEScaleKernel::NEScaleKernel() : _func(nullptr), _offsets(nullptr), _dx(nullptr), _dy(nullptr), _input(nullptr), _output(nullptr) { } BorderSize NEScaleKernel::border_size() const { return BorderSize(1); } void NEScaleKernel::configure(const ITensor *input, const ITensor *dx, const ITensor *dy, const ITensor *offsets, ITensor *output, InterpolationPolicy policy, bool border_undefined) { ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::U8, DataType::S16); ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::U8, DataType::S16); if(policy == InterpolationPolicy::NEAREST_NEIGHBOR) { ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(offsets, 1, DataType::S32); } if(policy == InterpolationPolicy::BILINEAR) { ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(offsets, 1, DataType::S32); ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(dx, 1, DataType::F32); ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(dy, 1, DataType::F32); } ARM_COMPUTE_ERROR_ON(output->info()->dimension(0) == 0); ARM_COMPUTE_ERROR_ON(output->info()->dimension(1) == 0); for(size_t i = 2; i < Coordinates::num_max_dimensions; ++i) { ARM_COMPUTE_ERROR_ON(input->info()->dimension(i) != output->info()->dimension(i)); } _input = input; _output = output; _offsets = offsets; _dx = dx; _dy = dy; switch(policy) { case InterpolationPolicy::NEAREST_NEIGHBOR: { _func = &NEScaleKernel::scale_nearest; break; } case InterpolationPolicy::BILINEAR: { ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(_dx, 1, DataType::F32); ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(_dy, 1, DataType::F32); _func = &NEScaleKernel::scale_bilinear; break; } case InterpolationPolicy::AREA: { _func = &NEScaleKernel::scale_area; break; } default: ARM_COMPUTE_ERROR("Unsupported interpolation mode"); } constexpr unsigned int num_elems_processed_per_iteration = 16; const int border_offset = (border_undefined) ? 0 : border_size().left; // Configure kernel window Window win = calculate_max_window(*output->info(), Steps(num_elems_processed_per_iteration)); AccessWindowStatic input_access(input->info(), -border_offset, -border_offset, input->info()->dimension(0) + border_offset, input->info()->dimension(1) + border_offset); AccessWindowHorizontal offsets_access(offsets->info(), 0, num_elems_processed_per_iteration); AccessWindowHorizontal dx_access(dx == nullptr ? nullptr : dx->info(), 0, num_elems_processed_per_iteration); AccessWindowHorizontal dy_access(dy == nullptr ? nullptr : dy->info(), 0, num_elems_processed_per_iteration); AccessWindowHorizontal output_access(output->info(), 0, num_elems_processed_per_iteration); update_window_and_padding(win, input_access, offsets_access, dx_access, dy_access, output_access); output_access.set_valid_region(win, ValidRegion(Coordinates(), output->info()->tensor_shape())); INEKernel::configure(win); } void NEScaleKernel::scale_nearest(const Window &window) { const size_t input_stride = _input->info()->strides_in_bytes()[1]; // Compute the ratio between source height and destination height const auto hr = static_cast(_input->info()->dimension(1)) / static_cast(_output->info()->dimension(1)); // Don't increment in X and Y direction for the input tensor // A pointer to the start of this plane is needed as base for the precomputed offsets Window win_in(window); win_in.set(Window::DimX, Window::Dimension(0, 0, 0)); win_in.set(Window::DimY, Window::Dimension(0, 0, 0)); Window win_off; win_off.set(Window::DimX, window[Window::DimX]); win_off.set(Window::DimY, window[Window::DimY]); for(size_t d = Window::DimZ; d < _offsets->info()->num_dimensions(); ++d) { win_off.set(d, Window::Dimension(0, 0, 0)); } Iterator in(_input, win_in); Iterator out(_output, window); Iterator offsets(_offsets, win_off); switch(_input->info()->data_type()) { case DataType::U8: { uint8x16_t tmp = vdupq_n_u8(0); execute_window_loop(window, [&](const Coordinates & id) { const auto offsets_ptr = reinterpret_cast(offsets.ptr()); const uint8_t *const in_ptr = in.ptr(); const size_t in_yi = (id.y() + 0.5f) * hr; const size_t offset_row = in_yi * input_stride; tmp = vsetq_lane_u8(in_ptr[offsets_ptr[0] + offset_row], tmp, 0); tmp = vsetq_lane_u8(in_ptr[offsets_ptr[1] + offset_row], tmp, 1); tmp = vsetq_lane_u8(in_ptr[offsets_ptr[2] + offset_row], tmp, 2); tmp = vsetq_lane_u8(in_ptr[offsets_ptr[3] + offset_row], tmp, 3); tmp = vsetq_lane_u8(in_ptr[offsets_ptr[4] + offset_row], tmp, 4); tmp = vsetq_lane_u8(in_ptr[offsets_ptr[5] + offset_row], tmp, 5); tmp = vsetq_lane_u8(in_ptr[offsets_ptr[6] + offset_row], tmp, 6); tmp = vsetq_lane_u8(in_ptr[offsets_ptr[7] + offset_row], tmp, 7); tmp = vsetq_lane_u8(in_ptr[offsets_ptr[8] + offset_row], tmp, 8); tmp = vsetq_lane_u8(in_ptr[offsets_ptr[9] + offset_row], tmp, 9); tmp = vsetq_lane_u8(in_ptr[offsets_ptr[10] + offset_row], tmp, 10); tmp = vsetq_lane_u8(in_ptr[offsets_ptr[11] + offset_row], tmp, 11); tmp = vsetq_lane_u8(in_ptr[offsets_ptr[12] + offset_row], tmp, 12); tmp = vsetq_lane_u8(in_ptr[offsets_ptr[13] + offset_row], tmp, 13); tmp = vsetq_lane_u8(in_ptr[offsets_ptr[14] + offset_row], tmp, 14); tmp = vsetq_lane_u8(in_ptr[offsets_ptr[15] + offset_row], tmp, 15); vst1q_u8(out.ptr(), tmp); }, in, offsets, out); break; } case DataType::S16: { int16x8x2_t tmp = { { vdupq_n_s16(0), vdupq_n_s16(0) } }; execute_window_loop(window, [&](const Coordinates & id) { const auto offsets_ptr = reinterpret_cast(offsets.ptr()); const size_t in_yi = (id.y() + 0.5f) * hr; const size_t offset_row = in_yi * input_stride; tmp.val[0] = vsetq_lane_s16(*reinterpret_cast(in.ptr() + offsets_ptr[0] + offset_row), tmp.val[0], 0); tmp.val[0] = vsetq_lane_s16(*reinterpret_cast(in.ptr() + offsets_ptr[2] + offset_row), tmp.val[0], 1); tmp.val[0] = vsetq_lane_s16(*reinterpret_cast(in.ptr() + offsets_ptr[4] + offset_row), tmp.val[0], 2); tmp.val[0] = vsetq_lane_s16(*reinterpret_cast(in.ptr() + offsets_ptr[6] + offset_row), tmp.val[0], 3); tmp.val[0] = vsetq_lane_s16(*reinterpret_cast(in.ptr() + offsets_ptr[8] + offset_row), tmp.val[0], 4); tmp.val[0] = vsetq_lane_s16(*reinterpret_cast(in.ptr() + offsets_ptr[10] + offset_row), tmp.val[0], 5); tmp.val[0] = vsetq_lane_s16(*reinterpret_cast(in.ptr() + offsets_ptr[12] + offset_row), tmp.val[0], 6); tmp.val[0] = vsetq_lane_s16(*reinterpret_cast(in.ptr() + offsets_ptr[14] + offset_row), tmp.val[0], 7); tmp.val[1] = vsetq_lane_s16(*reinterpret_cast(in.ptr() + offsets_ptr[1] + offset_row), tmp.val[1], 0); tmp.val[1] = vsetq_lane_s16(*reinterpret_cast(in.ptr() + offsets_ptr[3] + offset_row), tmp.val[1], 1); tmp.val[1] = vsetq_lane_s16(*reinterpret_cast(in.ptr() + offsets_ptr[5] + offset_row), tmp.val[1], 2); tmp.val[1] = vsetq_lane_s16(*reinterpret_cast(in.ptr() + offsets_ptr[7] + offset_row), tmp.val[1], 3); tmp.val[1] = vsetq_lane_s16(*reinterpret_cast(in.ptr() + offsets_ptr[9] + offset_row), tmp.val[1], 4); tmp.val[1] = vsetq_lane_s16(*reinterpret_cast(in.ptr() + offsets_ptr[11] + offset_row), tmp.val[1], 5); tmp.val[1] = vsetq_lane_s16(*reinterpret_cast(in.ptr() + offsets_ptr[13] + offset_row), tmp.val[1], 6); tmp.val[1] = vsetq_lane_s16(*reinterpret_cast(in.ptr() + offsets_ptr[15] + offset_row), tmp.val[1], 7); vst2q_s16(reinterpret_cast(out.ptr()), tmp); }, in, offsets, out); break; } default: ARM_COMPUTE_ERROR("Not supported"); break; } } void NEScaleKernel::scale_bilinear(const Window &window) { ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(_input, 1, DataType::U8); // Compute the ratio between source height and destination height const auto hr = static_cast(_input->info()->dimension(1)) / static_cast(_output->info()->dimension(1)); // Don't increment in X and Y direction for the input tensor // A pointer to the start of this plane is needed as base for the precomputed offsets Window win_in(window); win_in.set(Window::DimX, Window::Dimension(0, 0, 0)); win_in.set(Window::DimY, Window::Dimension(0, 0, 0)); Window win_off; win_off.set(Window::DimX, window.x()); win_off.set(Window::DimY, window.y()); for(size_t d = Window::DimZ; d < _offsets->info()->num_dimensions(); ++d) { win_off.set(d, Window::Dimension(0, 0, 0)); } Iterator in(_input, win_in); Iterator out(_output, window); Iterator offsets(_offsets, win_off); Iterator dx(_dx, win_off); Iterator dy(_dy, win_off); /* Input image stride */ const size_t in_stride = _input->info()->strides_in_bytes()[1]; execute_window_loop(window, [&](const Coordinates & id) { const auto offsets_ptr = reinterpret_cast(offsets.ptr()); const auto dx_ptr = reinterpret_cast(dx.ptr()); const auto dy_ptr = reinterpret_cast(dy.ptr()); const auto in_ptr = reinterpret_cast(in.ptr()); const size_t in_yi = std::floor((id.y() + 0.5f) * hr - 0.5f); const size_t offset_row = in_yi * in_stride; uint8x8_t tmp0 = vdup_n_u8(0); tmp0 = vset_lane_u8(delta_bilinear_c1u8(&in_ptr[offsets_ptr[0] + offset_row], in_stride, dx_ptr[0], dy_ptr[0]), tmp0, 0); tmp0 = vset_lane_u8(delta_bilinear_c1u8(&in_ptr[offsets_ptr[1] + offset_row], in_stride, dx_ptr[1], dy_ptr[1]), tmp0, 1); tmp0 = vset_lane_u8(delta_bilinear_c1u8(&in_ptr[offsets_ptr[2] + offset_row], in_stride, dx_ptr[2], dy_ptr[2]), tmp0, 2); tmp0 = vset_lane_u8(delta_bilinear_c1u8(&in_ptr[offsets_ptr[3] + offset_row], in_stride, dx_ptr[3], dy_ptr[3]), tmp0, 3); tmp0 = vset_lane_u8(delta_bilinear_c1u8(&in_ptr[offsets_ptr[4] + offset_row], in_stride, dx_ptr[4], dy_ptr[4]), tmp0, 4); tmp0 = vset_lane_u8(delta_bilinear_c1u8(&in_ptr[offsets_ptr[5] + offset_row], in_stride, dx_ptr[5], dy_ptr[5]), tmp0, 5); tmp0 = vset_lane_u8(delta_bilinear_c1u8(&in_ptr[offsets_ptr[6] + offset_row], in_stride, dx_ptr[6], dy_ptr[6]), tmp0, 6); tmp0 = vset_lane_u8(delta_bilinear_c1u8(&in_ptr[offsets_ptr[7] + offset_row], in_stride, dx_ptr[7], dy_ptr[7]), tmp0, 7); uint8x8_t tmp1 = vdup_n_u8(0); tmp1 = vset_lane_u8(delta_bilinear_c1u8(&in_ptr[offsets_ptr[8] + offset_row], in_stride, dx_ptr[8], dy_ptr[8]), tmp1, 0); tmp1 = vset_lane_u8(delta_bilinear_c1u8(&in_ptr[offsets_ptr[9] + offset_row], in_stride, dx_ptr[9], dy_ptr[9]), tmp1, 1); tmp1 = vset_lane_u8(delta_bilinear_c1u8(&in_ptr[offsets_ptr[10] + offset_row], in_stride, dx_ptr[10], dy_ptr[10]), tmp1, 2); tmp1 = vset_lane_u8(delta_bilinear_c1u8(&in_ptr[offsets_ptr[11] + offset_row], in_stride, dx_ptr[11], dy_ptr[11]), tmp1, 3); tmp1 = vset_lane_u8(delta_bilinear_c1u8(&in_ptr[offsets_ptr[12] + offset_row], in_stride, dx_ptr[12], dy_ptr[12]), tmp1, 4); tmp1 = vset_lane_u8(delta_bilinear_c1u8(&in_ptr[offsets_ptr[13] + offset_row], in_stride, dx_ptr[13], dy_ptr[13]), tmp1, 5); tmp1 = vset_lane_u8(delta_bilinear_c1u8(&in_ptr[offsets_ptr[14] + offset_row], in_stride, dx_ptr[14], dy_ptr[14]), tmp1, 6); tmp1 = vset_lane_u8(delta_bilinear_c1u8(&in_ptr[offsets_ptr[15] + offset_row], in_stride, dx_ptr[15], dy_ptr[15]), tmp1, 7); vst1q_u8(out.ptr(), vcombine_u8(tmp0, tmp1)); }, in, offsets, dx, dy, out); } void NEScaleKernel::scale_area(const Window &window) { ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(_input, 1, DataType::U8); // Don't increment in X and Y direction for the input tensor // A pointer to the start of this plane is needed as base for the precomputed offsets Window win_in(window); win_in.set(Window::DimX, Window::Dimension(0, 0, 0)); win_in.set(Window::DimY, Window::Dimension(0, 0, 0)); Iterator in(_input, win_in); Iterator out(_output, window); const auto wr = static_cast(_input->info()->dimension(0)) / static_cast(_output->info()->dimension(0)); const auto hr = static_cast(_input->info()->dimension(1)) / static_cast(_output->info()->dimension(1)); const auto w = _input->info()->dimension(0); const auto h = _input->info()->dimension(1); const size_t in_stride = _input->info()->strides_in_bytes()[1]; execute_window_loop(window, [&](const Coordinates & id) { const auto in_ptr = reinterpret_cast(in.ptr()); uint8x8_t tmp0 = vdup_n_u8(0); tmp0 = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x(), id.y()), tmp0, 0); tmp0 = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 1, id.y()), tmp0, 1); tmp0 = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 2, id.y()), tmp0, 2); tmp0 = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 3, id.y()), tmp0, 3); tmp0 = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 4, id.y()), tmp0, 4); tmp0 = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 5, id.y()), tmp0, 5); tmp0 = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 6, id.y()), tmp0, 6); tmp0 = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 7, id.y()), tmp0, 7); uint8x8_t tmp1 = vdup_n_u8(0); tmp1 = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 8, id.y()), tmp1, 0); tmp1 = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 9, id.y()), tmp1, 1); tmp1 = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 10, id.y()), tmp1, 2); tmp1 = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 11, id.y()), tmp1, 3); tmp1 = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 12, id.y()), tmp1, 4); tmp1 = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 13, id.y()), tmp1, 5); tmp1 = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 14, id.y()), tmp1, 6); tmp1 = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 15, id.y()), tmp1, 7); vst1q_u8(out.ptr(), vcombine_u8(tmp0, tmp1)); }, in, out); } void NEScaleKernel::run(const Window &window) { ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window); ARM_COMPUTE_ERROR_ON(_func == nullptr); (this->*_func)(window); }