/* * Copyright (c) 2016-2020 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "src/core/NEON/kernels/NEScaleKernel.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/Window.h" #include "arm_compute/core/utils/misc/Utility.h" #include "src/core/AccessWindowStatic.h" #include "src/core/CPP/Validate.h" #include "src/core/NEON/wrapper/wrapper.h" #include "src/core/helpers/AutoConfiguration.h" #include "src/core/helpers/ScaleHelpers.h" #include "src/core/helpers/WindowHelpers.h" #include "src/core/utils/ScaleUtils.h" #include "support/Rounding.h" #include #include namespace arm_compute { namespace { inline float compute_bilinear(float a00, float a01, float a10, float a11, float dx_val, float dy_val) { const float dx1_val = 1.0f - dx_val; const float dy1_val = 1.0f - dy_val; const float w1 = dx1_val * dy1_val; const float w2 = dx_val * dy1_val; const float w3 = dx1_val * dy_val; const float w4 = dx_val * dy_val; return a00 * w1 + a01 * w2 + a10 * w3 + a11 * w4; } Status validate_arguments(const ITensorInfo *input, const ITensorInfo *dx, const ITensorInfo *dy, const ITensorInfo *offsets, ITensorInfo *output, const ScaleKernelInfo &info) { ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::U8, DataType::S16, DataType::F16, DataType::F32, DataType::QASYMM8, DataType::QASYMM8_SIGNED); ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(output); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output); ARM_COMPUTE_RETURN_ERROR_ON(output == input); ARM_COMPUTE_RETURN_ERROR_ON(info.sampling_policy != SamplingPolicy::CENTER && info.sampling_policy != SamplingPolicy::TOP_LEFT); ARM_COMPUTE_UNUSED(info.constant_border_value); ARM_COMPUTE_RETURN_ERROR_ON_MSG(info.use_padding, "Padding is not supported"); const DataLayout data_layout = input->data_layout(); const auto width_index = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH); const auto height_index = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT); const auto output_width = output->dimension(width_index); const auto output_height = output->dimension(height_index); ARM_COMPUTE_RETURN_ERROR_ON(output_width == 0); ARM_COMPUTE_RETURN_ERROR_ON(output_height == 0); if(info.interpolation_policy == InterpolationPolicy::NEAREST_NEIGHBOR) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(offsets, 1, DataType::S32); } if(info.interpolation_policy == InterpolationPolicy::BILINEAR) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(offsets, 1, DataType::S32); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(dx, 1, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(dy, 1, DataType::F32); } ARM_COMPUTE_RETURN_ERROR_ON(info.align_corners && !scale_utils::is_align_corners_allowed_sampling_policy(info.sampling_policy)); if(info.interpolation_policy == InterpolationPolicy::AREA) { ARM_COMPUTE_RETURN_ERROR_ON(data_layout != DataLayout::NCHW); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::U8); } return Status{}; } } // namespace NEScaleKernel::NEScaleKernel() : _func(nullptr), _offsets(nullptr), _dx(nullptr), _dy(nullptr), _input(nullptr), _output(nullptr), _policy(), _border_mode(), _constant_border_value(PixelValue()), _sampling_offset(0), _align_corners(false) { } void NEScaleKernel::configure(const ITensor *input, const ITensor *dx, const ITensor *dy, const ITensor *offsets, ITensor *output, const ScaleKernelInfo &info) { ARM_COMPUTE_ERROR_ON_NULLPTR(input, output); // Perform validation step ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), dx != nullptr ? dx->info() : nullptr, dy != nullptr ? dy->info() : nullptr, offsets != nullptr ? offsets->info() : nullptr, output->info(), info)); // Get data layout and width/height indices const DataLayout data_layout = input->info()->data_layout(); const int idx_width = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH); const int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT); _input = input; _output = output; _offsets = offsets; _dx = dx; _dy = dy; _policy = info.interpolation_policy; _border_mode = info.border_mode; _constant_border_value = info.constant_border_value; _align_corners = info.align_corners; if(info.sampling_policy == SamplingPolicy::CENTER) { _sampling_offset = 0.5f; } // Compute the ratio between source width/height and destination width/height const auto wr = scale_utils::calculate_resize_ratio(input->info()->dimension(idx_width), output->info()->dimension(idx_width), _align_corners); const auto hr = scale_utils::calculate_resize_ratio(input->info()->dimension(idx_height), output->info()->dimension(idx_height), _align_corners); // Area interpolation behaves as Nearest Neighbour in case of up-sampling const auto policy_to_use = (info.interpolation_policy == InterpolationPolicy::AREA && wr <= 1.f && hr <= 1.f) ? InterpolationPolicy::NEAREST_NEIGHBOR : _policy; if(_border_mode == BorderMode::UNDEFINED) { _border_mode = BorderMode::CONSTANT; _constant_border_value = PixelValue(); } std::string function_to_call("scale_"); function_to_call += string_from_data_type(_input->info()->data_type()) + "_"; function_to_call += string_from_data_layout(_input->info()->data_layout()) + "_"; function_to_call += string_from_interpolation_policy(policy_to_use); static std::map map_function = { { "scale_U8_NCHW_AREA_CONSTANT", &NEScaleKernel::scale_area_nchw_u8 }, { "scale_U8_NCHW_BILINEAR", &NEScaleKernel::scale_bilinear_nchw }, { "scale_U8_NCHW_NEAREST_NEIGHBOUR", &NEScaleKernel::scale_nearest_nchw }, { "scale_U8_NHWC_BILINEAR", &NEScaleKernel::scale_bilinear_nhwc }, { "scale_U8_NHWC_NEAREST_NEIGHBOUR", &NEScaleKernel::scale_nearest_nhwc }, { "scale_QASYMM8_NCHW_BILINEAR", &NEScaleKernel::scale_bilinear_qasymm }, { "scale_QASYMM8_NCHW_NEAREST_NEIGHBOUR", &NEScaleKernel::scale_nearest_nchw }, { "scale_QASYMM8_NHWC_BILINEAR", &NEScaleKernel::scale_bilinear_qasymm }, { "scale_QASYMM8_NHWC_NEAREST_NEIGHBOUR", &NEScaleKernel::scale_nearest_nhwc }, { "scale_QASYMM8_SIGNED_NCHW_BILINEAR", &NEScaleKernel::scale_bilinear_qasymm }, { "scale_QASYMM8_SIGNED_NCHW_NEAREST_NEIGHBOUR", &NEScaleKernel::scale_nearest_nchw }, { "scale_QASYMM8_SIGNED_NHWC_BILINEAR", &NEScaleKernel::scale_bilinear_qasymm }, { "scale_QASYMM8_SIGNED_NHWC_NEAREST_NEIGHBOUR", &NEScaleKernel::scale_nearest_nhwc }, { "scale_S16_NCHW_BILINEAR", &NEScaleKernel::scale_bilinear_nchw }, { "scale_S16_NCHW_NEAREST_NEIGHBOUR", &NEScaleKernel::scale_nearest_nchw }, { "scale_S16_NHWC_BILINEAR", &NEScaleKernel::scale_bilinear_nhwc }, { "scale_S16_NHWC_NEAREST_NEIGHBOUR", &NEScaleKernel::scale_nearest_nhwc }, #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC { "scale_F16_NCHW_BILINEAR", &NEScaleKernel::scale_bilinear_nchw }, { "scale_F16_NCHW_NEAREST_NEIGHBOUR", &NEScaleKernel::scale_nearest_nchw }, { "scale_F16_NHWC_BILINEAR", &NEScaleKernel::scale_bilinear_nhwc }, { "scale_F16_NHWC_NEAREST_NEIGHBOUR", &NEScaleKernel::scale_nearest_nhwc }, #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */ { "scale_F32_NCHW_BILINEAR", &NEScaleKernel::scale_bilinear_nchw }, { "scale_F32_NCHW_NEAREST_NEIGHBOUR", &NEScaleKernel::scale_nearest_nchw }, { "scale_F32_NHWC_BILINEAR", &NEScaleKernel::scale_bilinear_nhwc }, { "scale_F32_NHWC_NEAREST_NEIGHBOUR", &NEScaleKernel::scale_nearest_nhwc }, }; auto it = map_function.find(function_to_call); if(it != map_function.end()) { _func = it->second; } // Configure window Window win = calculate_max_window(*output->info(), Steps()); Coordinates coord; coord.set_num_dimensions(output->info()->num_dimensions()); output->info()->set_valid_region(ValidRegion(coord, output->info()->tensor_shape())); INEKernel::configure(win); } template void NEScaleKernel::scale_nearest_nchw(const Window &window) { const size_t in_stride_x = _input->info()->dimension(0) + _input->info()->padding().left + _input->info()->padding().right; // Compute the ratio between source height and destination height const auto hr = scale_utils::calculate_resize_ratio(_input->info()->dimension(1), _output->info()->dimension(1), _align_corners); // Don't increment in X and Y direction for the input tensor // A pointer to the start of this plane is needed as base for the precomputed offsets Window win_in(window); win_in.set(Window::DimX, Window::Dimension(0, 0, 0)); win_in.set(Window::DimY, Window::Dimension(0, 0, 0)); // Set offsets window Window win_off; win_off.set(Window::DimX, window[Window::DimX]); win_off.set(Window::DimY, window[Window::DimY]); for(size_t d = Window::DimZ; d < _offsets->info()->num_dimensions(); ++d) { win_off.set(d, Window::Dimension(0, 0, 0)); } // Create iterators Iterator in(_input, win_in); Iterator out(_output, window); Iterator offsets(_offsets, win_off); execute_window_loop(window, [&](const Coordinates & id) { const auto offsets_ptr = reinterpret_cast(offsets.ptr()); const auto in_yi = static_cast(_align_corners ? utils::rounding::round_half_away_from_zero((id.y() + _sampling_offset) * hr) : std::floor((id.y() + _sampling_offset) * hr)); const int32_t offset_row = in_yi * in_stride_x; *reinterpret_cast(out.ptr()) = *(reinterpret_cast(in.ptr()) + offsets_ptr[0] + offset_row); }, in, offsets, out); } template void NEScaleKernel::scale_bilinear_nchw(const Window &window) { // Compute the ratio between source height and destination height const auto hr = scale_utils::calculate_resize_ratio(_input->info()->dimension(1), _output->info()->dimension(1), _align_corners); Window win_off; win_off.set(Window::DimX, window.x()); win_off.set(Window::DimY, window.y()); // Don't increment in X and Y direction for the input tensor // A pointer to the start of this plane is needed as base for the precomputed offsets Window win_in(window); win_in.set(Window::DimX, Window::Dimension(0, 0, 0)); win_in.set(Window::DimY, Window::Dimension(0, 0, 0)); for(size_t d = Window::DimZ; d < _offsets->info()->num_dimensions(); ++d) { win_off.set(d, Window::Dimension(0, 0, 0)); } Iterator in(_input, win_in); Iterator out(_output, window); Iterator offsets(_offsets, win_off); Iterator dx(_dx, win_off); Iterator dy(_dy, win_off); const int32_t in_dim_w = _input->info()->dimension(0); const int32_t in_dim_h = _input->info()->dimension(1); const int32_t in_stride_w = in_dim_w + _input->info()->padding().left + _input->info()->padding().right; if(_border_mode == BorderMode::CONSTANT) { #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC using ConstType = typename std::conditional::value, half, T>::type; #else /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */ using ConstType = T; #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */ const T const_border_value = static_cast(_constant_border_value.get()); execute_window_loop(window, [&](const Coordinates & id) { const int32_t index_h = std::floor((id.y() + _sampling_offset) * hr - _sampling_offset); const auto index_w = *(reinterpret_cast(offsets.ptr())); const auto dx_val = *(reinterpret_cast(dx.ptr())); const auto dy_val = *(reinterpret_cast(dy.ptr())); const auto pixel_row_ptr = reinterpret_cast(in.ptr()); const auto a00 = (0 <= index_w && index_w < in_dim_w && 0 <= index_h && index_h < in_dim_h) ? (*(pixel_row_ptr + index_w + index_h * in_stride_w)) : const_border_value; const auto a01 = (-1 <= index_w && index_w < in_dim_w - 1 && 0 <= index_h && index_h < in_dim_h) ? (*(pixel_row_ptr + index_w + 1 + index_h * in_stride_w)) : const_border_value; const auto a10 = (0 <= index_w && index_w < in_dim_w && -1 <= index_h && index_h < in_dim_h - 1) ? (*(pixel_row_ptr + index_w + index_h * in_stride_w + in_stride_w)) : const_border_value; const auto a11 = (-1 <= index_w && index_w < in_dim_w - 1 && -1 <= index_h && index_h < in_dim_h - 1) ? (*(pixel_row_ptr + index_w + 1 + index_h * in_stride_w + in_stride_w)) : const_border_value; *reinterpret_cast(out.ptr()) = static_cast(compute_bilinear(a00, a01, a10, a11, dx_val, dy_val)); }, in, offsets, dx, dy, out); } else if(_border_mode == BorderMode::REPLICATE) { execute_window_loop(window, [&](const Coordinates & id) { const int index_h = std::floor((id.y() + _sampling_offset) * hr - _sampling_offset); const auto index_w = *(reinterpret_cast(offsets.ptr())); const auto dx_val = *(reinterpret_cast(dx.ptr())); const auto dy_val = *(reinterpret_cast(dy.ptr())); const auto pixel_row_ptr = reinterpret_cast(in.ptr()); auto clamped_x = utility::clamp(index_w, 0, in_dim_w - 1); auto clamped_x1 = utility::clamp(index_w + 1, 0, in_dim_w - 1); auto clamped_y = utility::clamp(index_h, 0, in_dim_h - 1); auto clamped_y1 = utility::clamp(index_h + 1, 0, in_dim_h - 1); const auto a00 = *(pixel_row_ptr + clamped_x + clamped_y * in_stride_w); const auto a01 = *(pixel_row_ptr + clamped_x1 + clamped_y * in_stride_w); const auto a10 = *(pixel_row_ptr + clamped_x + clamped_y1 * in_stride_w); const auto a11 = *(pixel_row_ptr + clamped_x1 + clamped_y1 * in_stride_w); *reinterpret_cast(out.ptr()) = static_cast(compute_bilinear(a00, a01, a10, a11, dx_val, dy_val)); }, in, offsets, dx, dy, out); } else { ARM_COMPUTE_ERROR("Not implemented"); } } void NEScaleKernel::scale_area_nchw_u8(const Window &window) { using namespace scale_helpers; ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(_input, 1, DataType::U8); // Don't increment in width/height/channels for the input tensor // A pointer to the start of this plane is needed as base for the precomputed offsets Window win_in(window); win_in.set(Window::DimX, Window::Dimension(0, 0, 0)); win_in.set(Window::DimY, Window::Dimension(0, 0, 0)); win_in.set(Window::DimZ, Window::Dimension(0, 0, 0)); Iterator in(_input, win_in); Iterator out(_output, window); const auto wr = scale_utils::calculate_resize_ratio(_input->info()->dimension(0), _output->info()->dimension(0), _align_corners); const auto hr = scale_utils::calculate_resize_ratio(_input->info()->dimension(1), _output->info()->dimension(1), _align_corners); const auto w = _input->info()->dimension(0); const auto h = _input->info()->dimension(1); const size_t in_stride = _input->info()->strides_in_bytes()[1]; execute_window_loop(window, [&](const Coordinates & id) { const auto in_ptr = reinterpret_cast(in.ptr()); uint8x8_t tmp0 = vdup_n_u8(0); tmp0 = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x(), id.y()), tmp0, 0); tmp0 = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 1, id.y()), tmp0, 1); tmp0 = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 2, id.y()), tmp0, 2); tmp0 = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 3, id.y()), tmp0, 3); tmp0 = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 4, id.y()), tmp0, 4); tmp0 = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 5, id.y()), tmp0, 5); tmp0 = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 6, id.y()), tmp0, 6); tmp0 = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 7, id.y()), tmp0, 7); uint8x8_t tmp1 = vdup_n_u8(0); tmp1 = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 8, id.y()), tmp1, 0); tmp1 = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 9, id.y()), tmp1, 1); tmp1 = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 10, id.y()), tmp1, 2); tmp1 = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 11, id.y()), tmp1, 3); tmp1 = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 12, id.y()), tmp1, 4); tmp1 = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 13, id.y()), tmp1, 5); tmp1 = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 14, id.y()), tmp1, 6); tmp1 = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 15, id.y()), tmp1, 7); vst1q_u8(out.ptr(), vcombine_u8(tmp0, tmp1)); }, in, out); } template void NEScaleKernel::scale_nearest_nhwc(const Window &window) { const size_t in_stride_c = _input->info()->dimension(0) + _input->info()->padding().left + _input->info()->padding().right; const size_t in_stride_w = _input->info()->dimension(1) + _input->info()->padding().top + _input->info()->padding().bottom; const size_t in_stride_wc = in_stride_w * in_stride_c; const size_t in_dim_h = _input->info()->dimension(2); // Compute the ratio between source height and destination height const auto hr = scale_utils::calculate_resize_ratio(in_dim_h, _output->info()->dimension(2), _align_corners); const auto window_start_x = static_cast(window.x().start()); const auto window_end_x = static_cast(window.x().end()); const int window_step_x = 16 / sizeof(T); Window win(window); win.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator out(_output, win); const uint8_t *in_ptr_start = _input->buffer() + _input->info()->offset_first_element_in_bytes(); const unsigned int in_stride_bytes_hwc = _input->info()->strides_in_bytes()[3]; execute_window_loop(win, [&](const Coordinates & id) { const int32_t offset = *reinterpret_cast(_offsets->ptr_to_element(Coordinates(id.y(), id.z()))) * in_stride_c; const auto in_hi = static_cast(_align_corners ? utils::rounding::round_half_away_from_zero((id.z() + _sampling_offset) * hr) : std::floor((id.z() + _sampling_offset) * hr)); const int offset_row = in_hi * in_stride_wc; int32_t x = window_start_x; const T *in_ptr = reinterpret_cast(in_ptr_start + in_stride_bytes_hwc * id[3]); for(; x <= window_end_x - window_step_x; x += window_step_x) { wrapper::vstore(reinterpret_cast(out.ptr()) + x, wrapper::vloadq(in_ptr + offset + offset_row + x)); } for(; x < window_end_x; ++x) { *(reinterpret_cast(out.ptr()) + x) = *(in_ptr + offset + offset_row + x); } }, out); } template void NEScaleKernel::scale_bilinear_nhwc(const Window &window) { // Compute the ratio between source height and destination height const auto hr = scale_utils::calculate_resize_ratio(_input->info()->dimension(2), _output->info()->dimension(2), _align_corners); Iterator out(_output, window); const int in_stride_c = _input->info()->dimension(0) + _input->info()->padding().left + _input->info()->padding().right; const int in_dim_w = _input->info()->dimension(1); const int in_dim_h = _input->info()->dimension(2); const int in_stride_wc = in_stride_c * (in_dim_w + _input->info()->padding().top + _input->info()->padding().bottom); // Don't increment in Y and Z direction for the input tensor // A pointer to the start of this plane is needed as base for the precomputed offsets Window win_in(window); win_in.set(Window::DimY, Window::Dimension(0, 0, 0)); win_in.set(Window::DimZ, Window::Dimension(0, 0, 0)); Iterator in(_input, win_in); if(_border_mode == BorderMode::CONSTANT) { #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC using ConstType = typename std::conditional::value, half, T>::type; #else /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */ using ConstType = T; #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */ const T const_border_value = static_cast(_constant_border_value.get()); execute_window_loop(window, [&](const Coordinates & id) { const auto offset = *reinterpret_cast(_offsets->ptr_to_element(Coordinates(id.y(), id.z()))); const auto dx_val = *reinterpret_cast(_dx->ptr_to_element(Coordinates(id.y(), id.z()))); const auto dy_val = *reinterpret_cast(_dy->ptr_to_element(Coordinates(id.y(), id.z()))); const int32_t in_hi = std::floor((id.z() + _sampling_offset) * hr - _sampling_offset); const T *in_ptr = reinterpret_cast(in.ptr()) + offset * in_stride_c + in_hi * in_stride_wc; const auto a00 = (0 <= offset && offset < in_dim_w && 0 <= in_hi && in_hi < in_dim_h) ? *in_ptr : const_border_value; const auto a01 = (-1 <= offset && offset < in_dim_w - 1 && 0 <= in_hi && in_hi < in_dim_h) ? *(in_ptr + in_stride_c) : const_border_value; const auto a10 = (0 <= offset && offset < in_dim_w && -1 <= in_hi && in_hi < in_dim_h - 1) ? *(in_ptr + in_stride_wc) : const_border_value; const auto a11 = (-1 <= offset && offset < in_dim_w - 1 && -1 <= in_hi && in_hi < in_dim_h - 1) ? *(in_ptr + in_stride_c + in_stride_wc) : const_border_value; *reinterpret_cast(out.ptr()) = static_cast(compute_bilinear(a00, a01, a10, a11, dx_val, dy_val)); }, in, out); } else if(_border_mode == BorderMode::REPLICATE) { execute_window_loop(window, [&](const Coordinates & id) { const auto offset = *reinterpret_cast(_offsets->ptr_to_element(Coordinates(id.y(), id.z()))); const auto dx_val = *reinterpret_cast(_dx->ptr_to_element(Coordinates(id.y(), id.z()))); const auto dy_val = *reinterpret_cast(_dy->ptr_to_element(Coordinates(id.y(), id.z()))); const int in_hi = std::floor((id.z() + _sampling_offset) * hr - _sampling_offset); auto clamped_w = utility::clamp(offset, 0, in_dim_w - 1); auto clamped_w1 = utility::clamp(offset + 1, 0, in_dim_w - 1); auto clamped_h = utility::clamp(in_hi, 0, in_dim_h - 1); auto clamped_h1 = utility::clamp(in_hi + 1, 0, in_dim_h - 1); const auto a00 = *(reinterpret_cast(in.ptr()) + clamped_w * in_stride_c + clamped_h * in_stride_wc); const auto a01 = *(reinterpret_cast(in.ptr()) + clamped_w1 * in_stride_c + clamped_h * in_stride_wc); const auto a10 = *(reinterpret_cast(in.ptr()) + clamped_w * in_stride_c + clamped_h1 * in_stride_wc); const auto a11 = *(reinterpret_cast(in.ptr()) + clamped_w1 * in_stride_c + clamped_h1 * in_stride_wc); *reinterpret_cast(out.ptr()) = static_cast(compute_bilinear(a00, a01, a10, a11, dx_val, dy_val)); }, in, out); } else { ARM_COMPUTE_ERROR("Not implemented"); } } template void NEScaleKernel::scale_bilinear_qasymm(const Window &window) { // Get data layout and width/height indices const DataLayout data_layout = _input->info()->data_layout(); const int idx_width = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH); const int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT); // Compute the ratio between source height and destination height const auto hr = scale_utils::calculate_resize_ratio(_input->info()->dimension(idx_height), _output->info()->dimension(idx_height), _align_corners); Window win_off; win_off.set(Window::DimX, Window::Dimension(0, 0, 0)); win_off.set(Window::DimY, Window::Dimension(0, 0, 0)); // Don't increment in X and Y direction for the input tensor // A pointer to the start of this plane is needed as base for the precomputed offsets Window win_in(window); win_in.set(idx_width, Window::Dimension(0, 0, 0)); win_in.set(idx_height, Window::Dimension(0, 0, 0)); for(size_t d = Window::DimZ; d < _offsets->info()->num_dimensions(); ++d) { win_off.set(d, Window::Dimension(0, 0, 0)); } Iterator in(_input, win_in); Iterator out(_output, window); const int32_t in_dim_w = _input->info()->dimension(idx_width); const int32_t in_dim_h = _input->info()->dimension(idx_height); const int32_t stride_w = _input->info()->strides_in_bytes()[idx_width]; const int32_t stride_h = _input->info()->strides_in_bytes()[idx_height]; const UniformQuantizationInfo iq_info = _input->info()->quantization_info().uniform(); const UniformQuantizationInfo oq_info = _output->info()->quantization_info().uniform(); if(_border_mode == BorderMode::CONSTANT) { #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC using ConstType = typename std::conditional::value, half, T>::type; #else /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */ using ConstType = T; #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */ const T const_border_value = static_cast(_constant_border_value.get()); execute_window_loop(window, [&](const Coordinates & id) { const int32_t index_h = std::floor((id[idx_height] + _sampling_offset) * hr - _sampling_offset); const int32_t index_w = *(reinterpret_cast(_offsets->ptr_to_element(Coordinates(id[idx_width], id[idx_height])))); const auto dx_val = *(reinterpret_cast(_dx->ptr_to_element(Coordinates(id[idx_width], id[idx_height])))); const auto dy_val = *(reinterpret_cast(_dy->ptr_to_element(Coordinates(id[idx_width], id[idx_height])))); const auto pixel_row_ptr = reinterpret_cast(in.ptr()); const auto a00 = (0 <= index_w && index_w < in_dim_w && 0 <= index_h && index_h < in_dim_h) ? (*(pixel_row_ptr + index_w * stride_w + index_h * stride_h)) : const_border_value; const auto a01 = (-1 <= index_w && index_w < in_dim_w - 1 && 0 <= index_h && index_h < in_dim_h) ? (*(pixel_row_ptr + (index_w + 1) * stride_w + index_h * stride_h)) : const_border_value; const auto a10 = (0 <= index_w && index_w < in_dim_w && -1 <= index_h && index_h < in_dim_h - 1) ? (*(pixel_row_ptr + index_w * stride_w + (index_h + 1) * stride_h)) : const_border_value; const auto a11 = (-1 <= index_w && index_w < in_dim_w - 1 && -1 <= index_h && index_h < in_dim_h - 1) ? (*(pixel_row_ptr + (index_w + 1) * stride_w + (index_h + 1) * stride_h)) : const_border_value; const float inp00 = Qasymm8QuantizationHelper::dequantize(a00, iq_info); const float inp01 = Qasymm8QuantizationHelper::dequantize(a01, iq_info); const float inp10 = Qasymm8QuantizationHelper::dequantize(a10, iq_info); const float inp11 = Qasymm8QuantizationHelper::dequantize(a11, iq_info); *reinterpret_cast(out.ptr()) = Qasymm8QuantizationHelper::quantize(compute_bilinear(inp00, inp01, inp10, inp11, dx_val, dy_val), oq_info); }, in, out); } else if(_border_mode == BorderMode::REPLICATE) { execute_window_loop(window, [&](const Coordinates & id) { const int index_h = std::floor((id[idx_height] + _sampling_offset) * hr - _sampling_offset); const int32_t index_w = *(reinterpret_cast(_offsets->ptr_to_element(Coordinates(id[idx_width], id[idx_height])))); const auto dx_val = *(reinterpret_cast(_dx->ptr_to_element(Coordinates(id[idx_width], id[idx_height])))); const auto dy_val = *(reinterpret_cast(_dy->ptr_to_element(Coordinates(id[idx_width], id[idx_height])))); const auto pixel_row_ptr = reinterpret_cast(in.ptr()); auto clamped_w = utility::clamp(index_w, 0, in_dim_w - 1); auto clamped_w1 = utility::clamp(index_w + 1, 0, in_dim_w - 1); auto clamped_h = utility::clamp(index_h, 0, in_dim_h - 1); auto clamped_h1 = utility::clamp(index_h + 1, 0, in_dim_h - 1); const auto a00 = *(pixel_row_ptr + clamped_w * stride_w + clamped_h * stride_h); const auto a01 = *(pixel_row_ptr + clamped_w1 * stride_w + clamped_h * stride_h); const auto a10 = *(pixel_row_ptr + clamped_w * stride_w + clamped_h1 * stride_h); const auto a11 = *(pixel_row_ptr + clamped_w1 * stride_w + clamped_h1 * stride_h); const float inp00 = Qasymm8QuantizationHelper::dequantize(a00, iq_info); const float inp01 = Qasymm8QuantizationHelper::dequantize(a01, iq_info); const float inp10 = Qasymm8QuantizationHelper::dequantize(a10, iq_info); const float inp11 = Qasymm8QuantizationHelper::dequantize(a11, iq_info); *reinterpret_cast(out.ptr()) = Qasymm8QuantizationHelper::quantize(compute_bilinear(inp00, inp01, inp10, inp11, dx_val, dy_val), oq_info); }, in, out); } else { ARM_COMPUTE_ERROR("Not implemented"); } } Status NEScaleKernel::validate(const ITensorInfo *input, const ITensorInfo *dx, const ITensorInfo *dy, const ITensorInfo *offsets, ITensorInfo *output, const ScaleKernelInfo &info) { ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, dx, dy, offsets, output, info)); return Status{}; } void NEScaleKernel::run(const Window &window, const ThreadInfo &info) { ARM_COMPUTE_UNUSED(info); ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window); ARM_COMPUTE_ERROR_ON(_func == nullptr); (this->*_func)(window); } } // namespace arm_compute