/* * Copyright (c) 2017-2021 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "src/core/NEON/kernels/NERemapKernel.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/ITensor.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/Window.h" #include "src/core/AccessWindowStatic.h" #include "src/core/helpers/AutoConfiguration.h" #include "src/core/helpers/ScaleHelpers.h" #include "src/core/helpers/WindowHelpers.h" #include #include #include using namespace arm_compute::scale_helpers; namespace arm_compute { class Coordinates; namespace { inline int32_t num_out_of_tensor(const float *mapx_ptr, const float *mapy_ptr, const int32x4_t &width_1, const int32x4_t &height_1) { const int32x4_t mapx_s32 = vcvtq_s32_f32(vld1q_f32(mapx_ptr)); const int32x4_t mapy_s32 = vcvtq_s32_f32(vld1q_f32(mapy_ptr)); const int32x4_t outbx_s32 = vminq_s32(vmaxq_s32(vminq_s32(vsubq_s32(width_1, mapx_s32), mapx_s32), vdupq_n_s32(-1)), vdupq_n_s32(0)); // Contains -1 if out of border in x, 0 otherwise const int32x4_t outby_s32 = vminq_s32(vmaxq_s32(vminq_s32(vsubq_s32(height_1, mapy_s32), mapy_s32), vdupq_n_s32(-1)), vdupq_n_s32(0)); // Contains -1 if out of border in y, 0 otherwise const int32x4_t out_of_tensor_v = vminq_s32(outbx_s32, outby_s32); #if defined(__aarch64__) // only AArch64 supports vaddv return vaddvq_s32(out_of_tensor_v); #else // __aarch64__ return vgetq_lane_s32(out_of_tensor_v, 0) + vgetq_lane_s32(out_of_tensor_v, 1) + vgetq_lane_s32(out_of_tensor_v, 2) + vgetq_lane_s32(out_of_tensor_v, 3); #endif // __aarch64__ } inline void serial_remap_nearest_interpolation(const uint8_t *in_ptr, const float *mapx_ptr, const float *mapy_ptr, uint8_t *out_ptr, int32_t width_val, int32_t height_val, int32_t in_stride_val, uint8_t constant_border_value) { const auto x_s32 = static_cast(*mapx_ptr); const auto y_s32 = static_cast(*mapy_ptr); if(x_s32 < 0 || y_s32 < 0 || x_s32 >= width_val || y_s32 >= height_val) { *(out_ptr) = constant_border_value; } else { *(out_ptr) = in_ptr[x_s32 + y_s32 * in_stride_val]; } } inline int32x4_t offset_nearest_interpolation(const float *mapx_ptr, const float *mapy_ptr, const int32x4_t &stride) { const int32x4_t mapx_s32 = vcvtq_s32_f32(vld1q_f32(mapx_ptr)); const int32x4_t mapy_s32 = vcvtq_s32_f32(vld1q_f32(mapy_ptr)); return vmlaq_s32(mapx_s32, mapy_s32, stride); } inline uint8_t pixel_bilinear_c1_clamp(const uint8_t *pixel_ptr, int32_t stride, int32_t width, int32_t height, float x, float y, uint8_t constant_border_value) { x = std::max(-1.f, std::min(x, static_cast(width))); y = std::max(-1.f, std::min(y, static_cast(height))); const int32_t xi = static_cast(std::floor(x)); const int32_t yi = static_cast(std::floor(y)); const float dx = x - static_cast(xi); const float dy = y - static_cast(yi); // Calculating the address won't trigger a segfault in case the value is outside the tensor // The ternary operator resolves the values in both conditions const uint8_t *a00 = (xi < 0 || xi >= width || yi < 0 || yi >= height) ? &constant_border_value : (pixel_ptr + xi + yi * stride); const uint8_t *a01 = (xi + 1 >= width || yi < 0 || yi >= height) ? &constant_border_value : (pixel_ptr + xi + 1 + yi * stride); const uint8_t *a10 = (xi < 0 || xi >= width || yi + 1 >= height) ? &constant_border_value : (pixel_ptr + xi + yi * stride + stride); const uint8_t *a11 = (xi + 1 >= width || yi + 1 >= height) ? &constant_border_value : (pixel_ptr + xi + 1 + yi * stride + stride); const float dx1 = 1.0f - dx; const float dy1 = 1.0f - dy; const float w1 = dx1 * dy1; const float w2 = dx * dy1; const float w3 = dx1 * dy; const float w4 = dx * dy; return static_cast((*a00) * w1 + (*a01) * w2 + (*a10) * w3 + (*a11) * w4); } } // namespace NERemapKernel::NERemapKernel() : _func(nullptr), _input(nullptr), _output(nullptr), _map_x(nullptr), _map_y(nullptr), _border_mode(BorderMode::UNDEFINED), _constant_border_value(0) { } void NERemapKernel::configure(const ITensor *input, const ITensor *map_x, const ITensor *map_y, ITensor *output, InterpolationPolicy policy, BorderMode border_mode, uint8_t constant_border_value) { ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::U8); ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::U8); ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(map_x, 1, DataType::F32); ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(map_y, 1, DataType::F32); _input = input; _output = output; _map_x = map_x; _map_y = map_y; _border_mode = border_mode; _constant_border_value = constant_border_value; switch(policy) { case InterpolationPolicy::NEAREST_NEIGHBOR: { _func = &NERemapKernel::remap_nearest; break; } case InterpolationPolicy::BILINEAR: { _func = &NERemapKernel::remap_bilinear; break; } default: ARM_COMPUTE_ERROR("Unsupported interpolation mode"); break; } // Configure kernel window Window win = calculate_max_window(*output->info(), Steps()); INEKernel::configure(win); } void NERemapKernel::remap_nearest(const Window &window) { // Don't increment in X and Y direction for the input tensor // A pointer to the start of this plane is needed as base for the precomputed offsets Window win_in(window); win_in.set(Window::DimX, Window::Dimension(0, 0, 0)); win_in.set(Window::DimY, Window::Dimension(0, 0, 0)); const auto window_start_x = static_cast(window.x().start()); const auto window_end_x = static_cast(window.x().end()); const int32_t window_step_x = 8; // Don't increment in X direction for the output, mapx, mapy tensors Window win(window); win.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator in(_input, win_in); Iterator out(_output, win); Iterator mapx(_map_x, win); Iterator mapy(_map_y, win); const int32_t width_val = static_cast(_input->info()->dimension(0)); const int32_t height_val = static_cast(_input->info()->dimension(1)); const int32_t in_stride_val = static_cast(_input->info()->strides_in_bytes()[1]); const int32x4_t width_1 = vdupq_n_s32(width_val - 1); const int32x4_t height_1 = vdupq_n_s32(height_val - 1); const int32x4_t in_stride = vdupq_n_s32(in_stride_val); execute_window_loop(win, [&](const Coordinates &) { auto mapx_ptr = reinterpret_cast(mapx.ptr()); auto mapy_ptr = reinterpret_cast(mapy.ptr()); const uint8_t *in_ptr = in.ptr(); uint8_t *out_ptr = out.ptr(); int32_t x = window_start_x; for(; x < window_end_x - window_step_x; x += window_step_x, mapx_ptr += window_step_x, mapy_ptr += window_step_x, out_ptr += window_step_x) { const int32_t out_of_tensor0 = num_out_of_tensor(mapx_ptr, mapy_ptr + 0, width_1, height_1); const int32_t out_of_tensor1 = num_out_of_tensor(mapx_ptr + 4, mapy_ptr + 4, width_1, height_1); const int32_t out_of_tensor = out_of_tensor0 + out_of_tensor1; if(out_of_tensor == -8) { // All elements are out of xy plane uint8x8_t tmp = vdup_n_u8(_constant_border_value); vst1_u8(out_ptr, tmp); } else if(out_of_tensor < 0) { // Some elements are out of xy plane serial_remap_nearest_interpolation(in_ptr, mapx_ptr, mapy_ptr, out_ptr, width_val, height_val, in_stride_val, _constant_border_value); serial_remap_nearest_interpolation(in_ptr, mapx_ptr + 1, mapy_ptr + 1, out_ptr + 1, width_val, height_val, in_stride_val, _constant_border_value); serial_remap_nearest_interpolation(in_ptr, mapx_ptr + 2, mapy_ptr + 2, out_ptr + 2, width_val, height_val, in_stride_val, _constant_border_value); serial_remap_nearest_interpolation(in_ptr, mapx_ptr + 3, mapy_ptr + 3, out_ptr + 3, width_val, height_val, in_stride_val, _constant_border_value); serial_remap_nearest_interpolation(in_ptr, mapx_ptr + 4, mapy_ptr + 4, out_ptr + 4, width_val, height_val, in_stride_val, _constant_border_value); serial_remap_nearest_interpolation(in_ptr, mapx_ptr + 5, mapy_ptr + 5, out_ptr + 5, width_val, height_val, in_stride_val, _constant_border_value); serial_remap_nearest_interpolation(in_ptr, mapx_ptr + 6, mapy_ptr + 6, out_ptr + 6, width_val, height_val, in_stride_val, _constant_border_value); serial_remap_nearest_interpolation(in_ptr, mapx_ptr + 7, mapy_ptr + 7, out_ptr + 7, width_val, height_val, in_stride_val, _constant_border_value); } else { // All elements are in xy plane uint8x8_t tmp = vdup_n_u8(0); const int32x4_t offset0 = offset_nearest_interpolation(mapx_ptr, mapy_ptr, in_stride); const int32x4_t offset1 = offset_nearest_interpolation(mapx_ptr + 4, mapy_ptr + 4, in_stride); tmp = vset_lane_u8(in_ptr[vgetq_lane_s32(offset0, 0)], tmp, 0); tmp = vset_lane_u8(in_ptr[vgetq_lane_s32(offset0, 1)], tmp, 1); tmp = vset_lane_u8(in_ptr[vgetq_lane_s32(offset0, 2)], tmp, 2); tmp = vset_lane_u8(in_ptr[vgetq_lane_s32(offset0, 3)], tmp, 3); tmp = vset_lane_u8(in_ptr[vgetq_lane_s32(offset1, 0)], tmp, 4); tmp = vset_lane_u8(in_ptr[vgetq_lane_s32(offset1, 1)], tmp, 5); tmp = vset_lane_u8(in_ptr[vgetq_lane_s32(offset1, 2)], tmp, 6); tmp = vset_lane_u8(in_ptr[vgetq_lane_s32(offset1, 3)], tmp, 7); vst1_u8(out_ptr, tmp); } } for(; x < window_end_x; ++x, ++mapx_ptr, ++mapy_ptr, ++out_ptr) { serial_remap_nearest_interpolation(in_ptr, mapx_ptr, mapy_ptr, out_ptr, width_val, height_val, in_stride_val, _constant_border_value); } }, in, out, mapx, mapy); } void NERemapKernel::remap_bilinear(const Window &window) { // Don't increment in X and Y direction for the input tensor // A pointer to the start of this plane is needed as base for the precomputed offsets Window win_in(window); win_in.set(Window::DimX, Window::Dimension(0, 0, 0)); win_in.set(Window::DimY, Window::Dimension(0, 0, 0)); const auto window_start_x = static_cast(window.x().start()); const auto window_end_x = static_cast(window.x().end()); const int32_t window_step_x = 8; // Don't increment in X direction for the output, mapx, mapy tensors Window win(window); win.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator in(_input, win_in); Iterator out(_output, win); Iterator mapx(_map_x, win); Iterator mapy(_map_y, win); const int32_t width_val = static_cast(_input->info()->dimension(0)); const int32_t height_val = static_cast(_input->info()->dimension(1)); const int32x4_t width_2 = vdupq_n_s32(width_val - 2); const int32x4_t height_2 = vdupq_n_s32(height_val - 2); const int32_t in_stride_val = static_cast(_input->info()->strides_in_bytes()[1]); execute_window_loop(win, [&](const Coordinates &) { auto mapx_ptr = reinterpret_cast(mapx.ptr()); auto mapy_ptr = reinterpret_cast(mapy.ptr()); const uint8_t *in_ptr = in.ptr(); uint8_t *out_ptr = out.ptr(); int32_t x = window_start_x; for(; x < window_end_x - window_step_x; x += window_step_x, mapx_ptr += window_step_x, mapy_ptr += window_step_x, out_ptr += window_step_x) { const int32_t out_of_tensor0 = num_out_of_tensor(mapx_ptr, mapy_ptr + 0, width_2, height_2); const int32_t out_of_tensor1 = num_out_of_tensor(mapx_ptr + 4, mapy_ptr + 4, width_2, height_2); const int32_t out_of_tensor = out_of_tensor0 + out_of_tensor1; if(out_of_tensor < 0) { // Elements are out of xy plane *(out_ptr) = pixel_bilinear_c1_clamp(in_ptr, in_stride_val, width_val, height_val, mapx_ptr[0], mapy_ptr[0], _constant_border_value); *(out_ptr + 1) = pixel_bilinear_c1_clamp(in_ptr, in_stride_val, width_val, height_val, mapx_ptr[1], mapy_ptr[1], _constant_border_value); *(out_ptr + 2) = pixel_bilinear_c1_clamp(in_ptr, in_stride_val, width_val, height_val, mapx_ptr[2], mapy_ptr[2], _constant_border_value); *(out_ptr + 3) = pixel_bilinear_c1_clamp(in_ptr, in_stride_val, width_val, height_val, mapx_ptr[3], mapy_ptr[3], _constant_border_value); *(out_ptr + 4) = pixel_bilinear_c1_clamp(in_ptr, in_stride_val, width_val, height_val, mapx_ptr[4], mapy_ptr[4], _constant_border_value); *(out_ptr + 5) = pixel_bilinear_c1_clamp(in_ptr, in_stride_val, width_val, height_val, mapx_ptr[5], mapy_ptr[5], _constant_border_value); *(out_ptr + 6) = pixel_bilinear_c1_clamp(in_ptr, in_stride_val, width_val, height_val, mapx_ptr[6], mapy_ptr[6], _constant_border_value); *(out_ptr + 7) = pixel_bilinear_c1_clamp(in_ptr, in_stride_val, width_val, height_val, mapx_ptr[7], mapy_ptr[7], _constant_border_value); } else { // All elements are in xy plane uint8x8_t tmp = vdup_n_u8(0); tmp = vset_lane_u8(pixel_bilinear_c1_clamp(in_ptr, in_stride_val, width_val, height_val, mapx_ptr[0], mapy_ptr[0], _constant_border_value), tmp, 0); tmp = vset_lane_u8(pixel_bilinear_c1_clamp(in_ptr, in_stride_val, width_val, height_val, mapx_ptr[1], mapy_ptr[1], _constant_border_value), tmp, 1); tmp = vset_lane_u8(pixel_bilinear_c1_clamp(in_ptr, in_stride_val, width_val, height_val, mapx_ptr[2], mapy_ptr[2], _constant_border_value), tmp, 2); tmp = vset_lane_u8(pixel_bilinear_c1_clamp(in_ptr, in_stride_val, width_val, height_val, mapx_ptr[3], mapy_ptr[3], _constant_border_value), tmp, 3); tmp = vset_lane_u8(pixel_bilinear_c1_clamp(in_ptr, in_stride_val, width_val, height_val, mapx_ptr[4], mapy_ptr[4], _constant_border_value), tmp, 4); tmp = vset_lane_u8(pixel_bilinear_c1_clamp(in_ptr, in_stride_val, width_val, height_val, mapx_ptr[5], mapy_ptr[5], _constant_border_value), tmp, 5); tmp = vset_lane_u8(pixel_bilinear_c1_clamp(in_ptr, in_stride_val, width_val, height_val, mapx_ptr[6], mapy_ptr[6], _constant_border_value), tmp, 6); tmp = vset_lane_u8(pixel_bilinear_c1_clamp(in_ptr, in_stride_val, width_val, height_val, mapx_ptr[7], mapy_ptr[7], _constant_border_value), tmp, 7); vst1_u8(out_ptr, tmp); } } for(; x < window_end_x; ++x, ++mapx_ptr, ++mapy_ptr, ++out_ptr) { *(out_ptr) = pixel_bilinear_c1_clamp(in_ptr, in_stride_val, width_val, height_val, mapx_ptr[0], mapy_ptr[0], _constant_border_value); } }, in, out, mapx, mapy); } void NERemapKernel::run(const Window &window, const ThreadInfo &info) { ARM_COMPUTE_UNUSED(info); ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window); ARM_COMPUTE_ERROR_ON(_func == nullptr); (this->*_func)(window); } } // namespace arm_compute