/* * Copyright (c) 2017-2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/NEON/kernels/NEROIPoolingLayerKernel.h" #include "arm_compute/core/AccessWindowStatic.h" #include "arm_compute/core/CPP/Validate.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/ITensor.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/Window.h" #include "support/ToolchainSupport.h" #include #include namespace arm_compute { NEROIPoolingLayerKernel::NEROIPoolingLayerKernel() : _input(nullptr), _rois(nullptr), _output(nullptr), _pool_info(0, 0, 0.f) { } void NEROIPoolingLayerKernel::configure(const ITensor *input, const ITensor *rois, ITensor *output, const ROIPoolingLayerInfo &pool_info) { ARM_COMPUTE_ERROR_ON_NULLPTR(input, output, rois); //Validate arguments ARM_COMPUTE_ERROR_ON_NULLPTR(input->info(), rois->info(), output->info()); ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(rois, 1, DataType::U16); ARM_COMPUTE_ERROR_ON(rois->info()->dimension(0) != 5); ARM_COMPUTE_ERROR_ON(rois->info()->num_dimensions() > 2); ARM_COMPUTE_ERROR_ON_CPU_F16_UNSUPPORTED(input); ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F32, DataType::F16); ARM_COMPUTE_ERROR_ON((pool_info.pooled_width() == 0) || (pool_info.pooled_height() == 0)); if(output->info()->total_size() != 0) { ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, output); ARM_COMPUTE_ERROR_ON((output->info()->dimension(0) != pool_info.pooled_width()) || (output->info()->dimension(1) != pool_info.pooled_height())); ARM_COMPUTE_ERROR_ON(input->info()->dimension(2) != output->info()->dimension(2)); ARM_COMPUTE_ERROR_ON(rois->info()->dimension(1) != output->info()->dimension(3)); } // Output auto initialization if not yet initialized TensorShape output_shape(pool_info.pooled_width(), pool_info.pooled_height(), input->info()->dimension(2), rois->info()->dimension(1)); auto_init_if_empty(*output->info(), output_shape, 1, input->info()->data_type()); ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, output); ARM_COMPUTE_ERROR_ON((output->info()->dimension(0) != pool_info.pooled_width()) || (output->info()->dimension(1) != pool_info.pooled_height())); // Set instance variables _input = input; _rois = rois; _output = output; _pool_info = pool_info; // Configure kernel window Window window; window.set(Window::DimX, Window::Dimension(0, rois->info()->dimension(1))); window.set(Window::DimY, Window::Dimension(0, 1)); AccessWindowStatic input_access(input->info(), input->info()->valid_region().start(0), input->info()->valid_region().start(1), input->info()->valid_region().end(0), input->info()->valid_region().end(1)); AccessWindowStatic output_access(output->info(), 0, 0, pool_info.pooled_width(), pool_info.pooled_height()); ARM_COMPUTE_UNUSED(update_window_and_padding(window, input_access, output_access)); output_access.set_valid_region(window, ValidRegion(Coordinates(), output->info()->tensor_shape())); INEKernel::configure(window); } void NEROIPoolingLayerKernel::run(const Window &window, const ThreadInfo &info) { ARM_COMPUTE_UNUSED(info); ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window); const size_t values_per_roi = _rois->info()->dimension(0); const int roi_list_start = window.x().start(); const int roi_list_end = window.x().end(); const int width = _input->info()->dimension(Window::DimX); const int height = _input->info()->dimension(Window::DimY); const int fms = _input->info()->dimension(Window::DimZ); const int pooled_w = _pool_info.pooled_width(); const int pooled_h = _pool_info.pooled_height(); const float spatial_scale = _pool_info.spatial_scale(); const auto *rois_ptr = reinterpret_cast(_rois->buffer()); for(int roi_indx = roi_list_start; roi_indx < roi_list_end; ++roi_indx) { const unsigned int roi_batch = rois_ptr[values_per_roi * roi_indx]; const auto x1 = rois_ptr[values_per_roi * roi_indx + 1]; const auto y1 = rois_ptr[values_per_roi * roi_indx + 2]; const auto x2 = rois_ptr[values_per_roi * roi_indx + 3]; const auto y2 = rois_ptr[values_per_roi * roi_indx + 4]; // Scale ROI const int roi_anchor_x = support::cpp11::round(x1 * spatial_scale); const int roi_anchor_y = support::cpp11::round(y1 * spatial_scale); const int roi_width = std::max(support::cpp11::round((x2 - x1) * spatial_scale), 1.f); const int roi_height = std::max(support::cpp11::round((y2 - y1) * spatial_scale), 1.f); // Iterate through all feature maps for(int fm = 0; fm < fms; ++fm) { // Iterate through all output pixels for(int py = 0; py < pooled_h; ++py) { for(int px = 0; px < pooled_w; ++px) { auto region_start_x = static_cast(std::floor((static_cast(px) / pooled_w) * roi_width)); auto region_end_x = static_cast(std::floor((static_cast(px + 1) / pooled_w) * roi_width)); auto region_start_y = static_cast(std::floor((static_cast(py) / pooled_h) * roi_height)); auto region_end_y = static_cast(std::floor((static_cast(py + 1) / pooled_h) * roi_height)); region_start_x = std::min(std::max(region_start_x + roi_anchor_x, 0), width); region_end_x = std::min(std::max(region_end_x + roi_anchor_x, 0), width); region_start_y = std::min(std::max(region_start_y + roi_anchor_y, 0), height); region_end_y = std::min(std::max(region_end_y + roi_anchor_y, 0), height); // Iterate through the pooling region if((region_end_x <= region_start_x) || (region_end_y <= region_start_y)) { *reinterpret_cast(_output->ptr_to_element(Coordinates(px, py, fm, roi_indx))) = 0; } else { float curr_max = -FLT_MAX; for(int j = region_start_y; j < region_end_y; ++j) { for(int i = region_start_x; i < region_end_x; ++i) { const auto val = *reinterpret_cast(_input->ptr_to_element(Coordinates(i, j, fm, roi_batch))); curr_max = std::max(val, curr_max); } } *reinterpret_cast(_output->ptr_to_element(Coordinates(px, py, fm, roi_indx))) = curr_max; } } } } } } } // namespace arm_compute