/* * Copyright (c) 2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/NEON/kernels/NEROIAlignLayerKernel.h" #include "arm_compute/core/AccessWindowStatic.h" #include "arm_compute/core/CPP/Validate.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/Utils.h" #include "arm_compute/core/Window.h" #include "arm_compute/core/utils/misc/ShapeCalculator.h" #include "arm_compute/core/utils/misc/Utility.h" #include using namespace arm_compute::misc::shape_calculator; namespace arm_compute { namespace { Status validate_arguments(const ITensorInfo *input, const ITensorInfo *rois, ITensorInfo *output, const ROIPoolingLayerInfo &pool_info) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, rois, output); ARM_COMPUTE_RETURN_ERROR_ON(rois->dimension(0) != 5); ARM_COMPUTE_RETURN_ERROR_ON(rois->num_dimensions() > 2); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::F32, DataType::F16); ARM_COMPUTE_RETURN_ERROR_ON_DATA_LAYOUT_NOT_IN(input, DataLayout::NHWC, DataLayout::NCHW); ARM_COMPUTE_RETURN_ERROR_ON((pool_info.pooled_width() == 0) || (pool_info.pooled_height() == 0)); ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input); if(output->total_size() != 0) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(input, output); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(compute_roi_align_shape(*input, *rois, pool_info), output->tensor_shape()); } if(input->data_type() == DataType::QASYMM8) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(rois, 1, DataType::QASYMM16); const UniformQuantizationInfo rois_qinfo = rois->quantization_info().uniform(); ARM_COMPUTE_RETURN_ERROR_ON(rois_qinfo.scale != 0.125f); ARM_COMPUTE_RETURN_ERROR_ON(rois_qinfo.offset != 0); } else { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, rois); } return Status{}; } std::pair validate_and_configure_window(ITensorInfo *input, ITensorInfo *rois, ITensorInfo *output, const ROIPoolingLayerInfo &pool_info) { ARM_COMPUTE_ERROR_ON_NULLPTR(input, output); // Output auto inizialitation if not yet initialized const TensorShape output_shape = compute_roi_align_shape(*input, *rois, pool_info); auto_init_if_empty((*output), output_shape, 1, input->data_type()); output->set_data_layout(input->data_layout()); const unsigned int num_rois = rois->dimension(1); Window window; window.set(Window::DimX, Window::Dimension(0, num_rois)); window.set(Window::DimY, Window::Dimension(0, 1)); AccessWindowStatic input_access(input, input->valid_region().start(0), input->valid_region().start(1), input->valid_region().end(0), input->valid_region().end(1)); AccessWindowStatic output_access(output, 0, 0, pool_info.pooled_width(), pool_info.pooled_height()); const bool window_changed = update_window_and_padding(window, input_access, output_access); output_access.set_valid_region(window, ValidRegion(Coordinates(), output->tensor_shape())); Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{}; return std::make_pair(err, window); } } // namespace NEROIAlignLayerKernel::NEROIAlignLayerKernel() : _input(nullptr), _output(nullptr), _rois(nullptr), _pool_info(0, 0, 0.f) { } void NEROIAlignLayerKernel::configure(const ITensor *input, const ITensor *rois, ITensor *output, const ROIPoolingLayerInfo &pool_info) { ARM_COMPUTE_ERROR_ON_NULLPTR(input, output, rois); ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), rois->info(), output->info(), pool_info)); // Configure kernel window auto win_config = validate_and_configure_window(input->info(), rois->info(), output->info(), pool_info); ARM_COMPUTE_ERROR_THROW_ON(win_config.first); // Set instance variables _input = input; _rois = rois; _output = output; _pool_info = pool_info; INEKernel::configure(win_config.second); } Status NEROIAlignLayerKernel::validate(const ITensorInfo *input, const ITensorInfo *rois, ITensorInfo *output, const ROIPoolingLayerInfo &pool_info) { ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, rois, output, pool_info)); return Status{}; } /** Average pooling over an aligned window */ template inline input_data_type roi_align_1x1(const ITensor *input, unsigned int roi_batch, float region_start_x, float bin_size_x, int grid_size_x, float region_end_x, float region_start_y, float bin_size_y, int grid_size_y, float region_end_y, int pz) { if((region_end_x <= region_start_x) || (region_end_y <= region_start_y)) { return input_data_type(0); } else { float avg = 0; // Iterate through the aligned pooling region for(int iy = 0; iy < grid_size_y; ++iy) { for(int ix = 0; ix < grid_size_x; ++ix) { // Align the window in the middle of every bin float y = region_start_y + (iy + 0.5) * bin_size_y / float(grid_size_y); float x = region_start_x + (ix + 0.5) * bin_size_x / float(grid_size_x); // Interpolation in the [0,0] [0,1] [1,0] [1,1] square const int y_low = y; const int x_low = x; const int y_high = y_low + 1; const int x_high = x_low + 1; const float ly = y - y_low; const float lx = x - x_low; const float hy = 1. - ly; const float hx = 1. - lx; const float w1 = hy * hx; const float w2 = hy * lx; const float w3 = ly * hx; const float w4 = ly * lx; if(data_layout == DataLayout::NCHW) { const auto data1 = *reinterpret_cast(input->ptr_to_element(Coordinates(x_low, y_low, pz, roi_batch))); const auto data2 = *reinterpret_cast(input->ptr_to_element(Coordinates(x_high, y_low, pz, roi_batch))); const auto data3 = *reinterpret_cast(input->ptr_to_element(Coordinates(x_low, y_high, pz, roi_batch))); const auto data4 = *reinterpret_cast(input->ptr_to_element(Coordinates(x_high, y_high, pz, roi_batch))); avg += w1 * data1 + w2 * data2 + w3 * data3 + w4 * data4; } else { const auto data1 = *reinterpret_cast(input->ptr_to_element(Coordinates(pz, x_low, y_low, roi_batch))); const auto data2 = *reinterpret_cast(input->ptr_to_element(Coordinates(pz, x_high, y_low, roi_batch))); const auto data3 = *reinterpret_cast(input->ptr_to_element(Coordinates(pz, x_low, y_high, roi_batch))); const auto data4 = *reinterpret_cast(input->ptr_to_element(Coordinates(pz, x_high, y_high, roi_batch))); avg += w1 * data1 + w2 * data2 + w3 * data3 + w4 * data4; } } } avg /= grid_size_x * grid_size_y; return input_data_type(avg); } } /** Average pooling over an aligned window */ template inline input_data_type roi_align_1x1_qasymm8(const ITensor *input, unsigned int roi_batch, float region_start_x, float bin_size_x, int grid_size_x, float region_end_x, float region_start_y, float bin_size_y, int grid_size_y, float region_end_y, int pz, const QuantizationInfo &out_qinfo) { if((region_end_x <= region_start_x) || (region_end_y <= region_start_y)) { return input_data_type(out_qinfo.uniform().offset); } else { float avg = 0; const UniformQuantizationInfo input_qinfo = input->info()->quantization_info().uniform(); // Iterate through the aligned pooling region for(int iy = 0; iy < grid_size_y; ++iy) { for(int ix = 0; ix < grid_size_x; ++ix) { // Align the window in the middle of every bin float y = region_start_y + (iy + 0.5) * bin_size_y / float(grid_size_y); float x = region_start_x + (ix + 0.5) * bin_size_x / float(grid_size_x); // Interpolation in the [0,0] [0,1] [1,0] [1,1] square const int y_low = y; const int x_low = x; const int y_high = y_low + 1; const int x_high = x_low + 1; const float ly = y - y_low; const float lx = x - x_low; const float hy = 1. - ly; const float hx = 1. - lx; const float w1 = hy * hx; const float w2 = hy * lx; const float w3 = ly * hx; const float w4 = ly * lx; if(data_layout == DataLayout::NCHW) { float data1 = dequantize_qasymm8(*reinterpret_cast(input->ptr_to_element(Coordinates(x_low, y_low, pz, roi_batch))), input_qinfo); float data2 = dequantize_qasymm8(*reinterpret_cast(input->ptr_to_element(Coordinates(x_high, y_low, pz, roi_batch))), input_qinfo); float data3 = dequantize_qasymm8(*reinterpret_cast(input->ptr_to_element(Coordinates(x_low, y_high, pz, roi_batch))), input_qinfo); float data4 = dequantize_qasymm8(*reinterpret_cast(input->ptr_to_element(Coordinates(x_high, y_high, pz, roi_batch))), input_qinfo); avg += w1 * data1 + w2 * data2 + w3 * data3 + w4 * data4; } else { const auto data1 = dequantize_qasymm8(*reinterpret_cast(input->ptr_to_element(Coordinates(pz, x_low, y_low, roi_batch))), input_qinfo); const auto data2 = dequantize_qasymm8(*reinterpret_cast(input->ptr_to_element(Coordinates(pz, x_high, y_low, roi_batch))), input_qinfo); const auto data3 = dequantize_qasymm8(*reinterpret_cast(input->ptr_to_element(Coordinates(pz, x_low, y_high, roi_batch))), input_qinfo); const auto data4 = dequantize_qasymm8(*reinterpret_cast(input->ptr_to_element(Coordinates(pz, x_high, y_high, roi_batch))), input_qinfo); avg += w1 * data1 + w2 * data2 + w3 * data3 + w4 * data4; } } } avg /= grid_size_x * grid_size_y; return quantize_qasymm8(avg, out_qinfo); } } inline float compute_region_coordinate(int p, float bin_size, float roi_anchor, float max_value) { const float region_start = p * bin_size + roi_anchor; return utility::clamp(region_start, 0.0f, max_value); } void NEROIAlignLayerKernel::run(const Window &window, const ThreadInfo &info) { if(_input->info()->data_layout() == DataLayout::NCHW) { switch(_input->info()->data_type()) { case DataType::QASYMM8: { NEROIAlignLayerKernel::internal_run(window, info); break; } case DataType::F32: { NEROIAlignLayerKernel::internal_run(window, info); break; } #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC case DataType::F16: { NEROIAlignLayerKernel::internal_run(window, info); break; } #endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC default: { ARM_COMPUTE_ERROR("DataType not supported"); break; } } } else if(_input->info()->data_layout() == DataLayout::NHWC) { switch(_input->info()->data_type()) { case DataType::QASYMM8: { NEROIAlignLayerKernel::internal_run(window, info); break; } case DataType::F32: { NEROIAlignLayerKernel::internal_run(window, info); break; } #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC case DataType::F16: { NEROIAlignLayerKernel::internal_run(window, info); break; } #endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC default: { ARM_COMPUTE_ERROR("DataType not supported"); break; } } } else { ARM_COMPUTE_ERROR("Invalid layout"); } } template void NEROIAlignLayerKernel::internal_run(const Window &window, const ThreadInfo &info) { ARM_COMPUTE_UNUSED(info); ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window); const size_t values_per_roi = _rois->info()->dimension(0); const int roi_list_start = window.x().start(); const int roi_list_end = window.x().end(); const unsigned int idx_width = get_data_layout_dimension_index(_input->info()->data_layout(), DataLayoutDimension::WIDTH); const unsigned int idx_height = get_data_layout_dimension_index(_input->info()->data_layout(), DataLayoutDimension::HEIGHT); const unsigned int idx_depth = get_data_layout_dimension_index(_input->info()->data_layout(), DataLayoutDimension::CHANNEL); const int input_width = _input->info()->dimension(idx_width); const int input_height = _input->info()->dimension(idx_height); const int input_chanels = _input->info()->dimension(idx_depth); const int pooled_w = _pool_info.pooled_width(); const int pooled_h = _pool_info.pooled_height(); const DataType data_type = _input->info()->data_type(); const bool is_qasymm = is_data_type_quantized_asymmetric(data_type); const auto *rois_ptr = reinterpret_cast(_rois->buffer()); const QuantizationInfo &rois_qinfo = _rois->info()->quantization_info(); for(int roi_indx = roi_list_start; roi_indx < roi_list_end; ++roi_indx) { const unsigned int roi_batch = rois_ptr[values_per_roi * roi_indx]; roi_data_type qx1 = rois_ptr[values_per_roi * roi_indx + 1]; roi_data_type qy1 = rois_ptr[values_per_roi * roi_indx + 2]; roi_data_type qx2 = rois_ptr[values_per_roi * roi_indx + 3]; roi_data_type qy2 = rois_ptr[values_per_roi * roi_indx + 4]; float x1(qx1); float x2(qx2); float y1(qy1); float y2(qy2); if(is_qasymm) { x1 = dequantize_qasymm16(qx1, rois_qinfo); x2 = dequantize_qasymm16(qx2, rois_qinfo); y1 = dequantize_qasymm16(qy1, rois_qinfo); y2 = dequantize_qasymm16(qy2, rois_qinfo); } const float roi_anchor_x = x1 * _pool_info.spatial_scale(); const float roi_anchor_y = y1 * _pool_info.spatial_scale(); const float roi_dims_x = std::max((x2 - x1) * _pool_info.spatial_scale(), 1.0f); const float roi_dims_y = std::max((y2 - y1) * _pool_info.spatial_scale(), 1.0f); float bin_size_x = roi_dims_x / _pool_info.pooled_width(); float bin_size_y = roi_dims_y / _pool_info.pooled_height(); // Iterate through all feature maps for(int ch = 0; ch < input_chanels; ++ch) { // Iterate through all output pixels for(int py = 0; py < pooled_h; ++py) { for(int px = 0; px < pooled_w; ++px) { const float region_start_x = compute_region_coordinate(px, bin_size_x, roi_anchor_x, input_width); const float region_start_y = compute_region_coordinate(py, bin_size_y, roi_anchor_y, input_height); const float region_end_x = compute_region_coordinate(px + 1, bin_size_x, roi_anchor_x, input_width); const float region_end_y = compute_region_coordinate(py + 1, bin_size_y, roi_anchor_y, input_height); const int roi_bin_grid_x = (_pool_info.sampling_ratio() > 0) ? _pool_info.sampling_ratio() : int(ceil(bin_size_x)); const int roi_bin_grid_y = (_pool_info.sampling_ratio() > 0) ? _pool_info.sampling_ratio() : int(ceil(bin_size_y)); input_data_type out_val(0); if(is_qasymm) { out_val = roi_align_1x1_qasymm8( _input, roi_batch, region_start_x, bin_size_x, roi_bin_grid_x, region_end_x, region_start_y, bin_size_y, roi_bin_grid_y, region_end_y, ch, _output->info()->quantization_info()); } else { out_val = roi_align_1x1( _input, roi_batch, region_start_x, bin_size_x, roi_bin_grid_x, region_end_x, region_start_y, bin_size_y, roi_bin_grid_y, region_end_y, ch); } if(data_layout == DataLayout::NCHW) { auto out_ptr = reinterpret_cast(_output->ptr_to_element(Coordinates(px, py, ch, roi_indx))); *out_ptr = out_val; } else { auto out_ptr = reinterpret_cast(_output->ptr_to_element(Coordinates(ch, px, py, roi_indx))); *out_ptr = out_val; } } } } } } } // namespace arm_compute