/* * Copyright (c) 2017-2018 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/NEON/kernels/NEQuantizationLayerKernel.h" #include "arm_compute/core/AccessWindowStatic.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/Utils.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/Window.h" #include using namespace arm_compute; namespace { Status validate_arguments(const ITensorInfo *input, const ITensorInfo *output, const ITensorInfo *min_max) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, output, min_max); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON(input->num_dimensions() < 3); if(output->tensor_shape().total_size() > 0) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::U8); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input, output); } return Status{}; } std::tuple validate_and_configure_window(ITensorInfo *input, ITensorInfo *output, ITensorInfo *min_max) { // Output tensor auto initialization if not yet initialized auto_init_if_empty(*output, input->tensor_shape(), 1, DataType::U8); constexpr unsigned int num_elems_processed_per_iteration = 8; // Configure window Window win = calculate_max_window(*input, Steps(num_elems_processed_per_iteration)); AccessWindowHorizontal input_access(input, 0, num_elems_processed_per_iteration); AccessWindowHorizontal output_access(output, 0, num_elems_processed_per_iteration); AccessWindowStatic min_max_access(min_max, 0, 0, 2, min_max->dimension(1)); // Update window and padding bool window_changed = update_window_and_padding(win, input_access, output_access, min_max_access); output_access.set_valid_region(win, input->valid_region()); Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{}; return std::make_tuple(err, win); } } // namespace NEQuantizationLayerKernel::NEQuantizationLayerKernel() : _input(nullptr), _output(nullptr), _min_max(nullptr) { } void NEQuantizationLayerKernel::configure(const ITensor *input, ITensor *output, const ITensor *min_max) { ARM_COMPUTE_ERROR_ON_NULLPTR(input, output, min_max); ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), output->info(), min_max->info())); _input = input; _output = output; _min_max = min_max; // Configure kernel window auto win_config = validate_and_configure_window(input->info(), output->info(), min_max->info()); ARM_COMPUTE_ERROR_THROW_ON(std::get<0>(win_config)); INEKernel::configure(std::get<1>(win_config)); } Status NEQuantizationLayerKernel::validate(const ITensorInfo *input, const ITensorInfo *output, const ITensorInfo *min_max) { ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, output, min_max)); ARM_COMPUTE_RETURN_ON_ERROR(std::get<0>(validate_and_configure_window(input->clone().get(), output->clone().get(), min_max->clone().get()))); return Status{}; } void NEQuantizationLayerKernel::run(const Window &window, const ThreadInfo &info) { ARM_COMPUTE_UNUSED(info); ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window); Window window_input_output(window); window_input_output.set(3, Window::Dimension(0, 1, 1)); Window window_min_max; window_min_max.use_tensor_dimensions(_min_max->info()->tensor_shape()); window_min_max.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator input(_input, window_input_output); Iterator output(_output, window_input_output); Iterator min_max(_min_max, window_min_max); execute_window_loop(window_min_max, [&](const Coordinates & id_batch) { // Get the min and max float min = *(reinterpret_cast(min_max.ptr()) + 0); float max = *(reinterpret_cast(min_max.ptr()) + 1); // Saturate the result if min = max if(min == max) { min = 0.0f; max = 1.0f; } const float32x4_t vmin = vdupq_n_f32(min); const float32x4_t inv_range = vdupq_n_f32(1.0f / (max - min)); const float32x4_t quantization_max = vdupq_n_f32(255.0f); const float32x4_t quantization_mul = vdupq_n_f32(256.0f); // Uniformly map values to range 8bit integers, i.e. [min, max] -> [0, 255] execute_window_loop(window_input_output, [&](const Coordinates & id) { // Get the input values const auto input_ptr = reinterpret_cast(input.ptr() + id_batch[1] * _input->info()->strides_in_bytes()[3]); float32x4x2_t val = vld2q_f32(input_ptr); // Map float values to range [0.0, 1.0] val.val[0] = vsubq_f32(val.val[0], vmin); val.val[1] = vsubq_f32(val.val[1], vmin); val.val[0] = vmulq_f32(val.val[0], inv_range); val.val[1] = vmulq_f32(val.val[1], inv_range); // Quantize val.val[0] = vmulq_f32(val.val[0], quantization_mul); val.val[1] = vmulq_f32(val.val[1], quantization_mul); val.val[0] = vminq_f32(val.val[0], quantization_max); val.val[1] = vminq_f32(val.val[1], quantization_max); const uint32x4_t val_u32_low = vcvtq_u32_f32(val.val[0]); const uint32x4_t val_u32_high = vcvtq_u32_f32(val.val[1]); const uint16x4x2_t val_u16 = vzip_u16(vmovn_u32(val_u32_low), vmovn_u32(val_u32_high)); const uint8x8_t quantized = vmovn_u16(vcombine_u16(val_u16.val[0], val_u16.val[1])); // Store the quantized values auto output_ptr = reinterpret_cast(output.ptr() + id_batch[1] * _output->info()->strides_in_bytes()[3]); vst1_u8(output_ptr, quantized); }, input, output); }, min_max); }