/* * Copyright (c) 2017-2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/NEON/kernels/NEPoolingLayerKernel.h" #include "arm_compute/core/AccessWindowStatic.h" #include "arm_compute/core/CPP/Validate.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/ITensor.h" #include "arm_compute/core/NEON/NEAsymm.h" #include "arm_compute/core/NEON/NEFixedPoint.h" #include "arm_compute/core/NEON/NEMath.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/Utils.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/Window.h" #include "arm_compute/core/utils/misc/ShapeCalculator.h" #include "support/ToolchainSupport.h" #include #include #include #include #include #include #include using namespace arm_compute; using namespace misc::shape_calculator; namespace { inline float calculate_avg_scale(bool exclude_padding, DataLayout data_layout, const Coordinates &id, const int pool_size_x, const int pool_size_y, const int upper_bound_w, const int upper_bound_h, const int pad_x, const int pad_y, const int stride_x, const int stride_y) { const unsigned int idx_width = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH); const unsigned int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT); int start_x = id[idx_width] * stride_x - pad_x; int start_y = id[idx_height] * stride_y - pad_y; const int end_x = std::min(start_x + pool_size_x, upper_bound_w); const int end_y = std::min(start_y + pool_size_y, upper_bound_h); if(exclude_padding) { start_x = std::max(0, start_x); start_y = std::max(0, start_y); } return 1.f / ((end_y - start_y) * (end_x - start_x)); } inline void scale_vector_s16x8(bool exclude_padding, uint16x8_t &v, const Coordinates &id, int id_offset, int step, const int pool_size, const int upper_bound_w, const int upper_bound_h, const int pad_x, const int pad_y, const int stride_x, const int stride_y) { int start_x = (id.x() + id_offset) * stride_x - pad_x; int start_y = id.y() * stride_y - pad_y; const int end_y = std::min(start_y + pool_size, upper_bound_h); if(exclude_padding) { start_y = std::max(0, start_y); } std::array elems = { { vgetq_lane_u16(v, 0), vgetq_lane_u16(v, 1), vgetq_lane_u16(v, 2), vgetq_lane_u16(v, 3), vgetq_lane_u16(v, 4), vgetq_lane_u16(v, 5), vgetq_lane_u16(v, 6), vgetq_lane_u16(v, 7), } }; for(auto &el : elems) { int c_start_x = start_x; const int end_x = std::min(c_start_x + pool_size, upper_bound_w); if(exclude_padding) { c_start_x = std::max(0, c_start_x); } float scale = 1.f / ((end_y - start_y) * (end_x - c_start_x)); el *= scale; start_x += step * stride_x; } v = vsetq_lane_u16(elems[0], v, 0); v = vsetq_lane_u16(elems[1], v, 1); v = vsetq_lane_u16(elems[2], v, 2); v = vsetq_lane_u16(elems[3], v, 3); v = vsetq_lane_u16(elems[4], v, 4); v = vsetq_lane_u16(elems[5], v, 5); v = vsetq_lane_u16(elems[6], v, 6); v = vsetq_lane_u16(elems[7], v, 7); } Status validate_arguments(const ITensorInfo *input, const ITensorInfo *output, const PoolingLayerInfo &pool_info, unsigned int &pooled_w, unsigned int pooled_h) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, output); int pool_stride_x = 0; int pool_stride_y = 0; PoolingType pool_type = pool_info.pool_type(); const PadStrideInfo pad_stride_info = pool_info.pad_stride_info(); std::tie(pool_stride_x, pool_stride_y) = pad_stride_info.stride(); ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::F16, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON(pool_type == PoolingType::L2 && is_data_type_quantized(input->data_type())); if(output->total_size() != 0) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(input, output); ARM_COMPUTE_RETURN_ERROR_ON((output->dimension(get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::WIDTH)) != pooled_w) || (output->dimension(get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::HEIGHT)) != pooled_h)); } return Status{}; } Status validate_arguments_pool_info(const unsigned int pool_size_x, const unsigned int pool_size_y) { ARM_COMPUTE_RETURN_ERROR_ON(pool_size_x == 0); ARM_COMPUTE_RETURN_ERROR_ON(pool_size_y == 0); return Status{}; } std::pair validate_and_configure_window(ITensorInfo *input, ITensorInfo *output, const PoolingLayerInfo &pool_info, unsigned int &num_elems_processed_per_iteration, BorderSize &border_size, unsigned int pooled_w, unsigned int pooled_h, int pool_size_x, int pool_size_y) { // Output auto inizialitation if not yet initialized auto_init_if_empty(*output, input->clone()->set_tensor_shape(compute_pool_shape(*input, pool_info))); DataLayout data_layout = input->data_layout(); unsigned int num_elems_read_per_iteration = 0; unsigned int num_elems_horizontal_window = 0; int pool_stride_x = 0; int pool_stride_y = 0; const int idx_width = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH); const int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT); const int input_width = input->dimension(idx_width); const int input_height = input->dimension(idx_height); const PadStrideInfo pad_stride_info = pool_info.pad_stride_info(); std::tie(pool_stride_x, pool_stride_y) = pad_stride_info.stride(); const int pool_pad_right = pad_stride_info.pad_right(); const int pool_pad_top = pad_stride_info.pad_top(); const int pool_pad_left = pad_stride_info.pad_left(); const int pool_pad_bottom = pad_stride_info.pad_bottom(); const bool is_square = pool_size_x == pool_size_y; // Check output dimensions std::tie(pooled_w, pooled_h) = scaled_dimensions(input->dimension(idx_width), input->dimension(idx_height), pool_size_x, pool_size_y, pad_stride_info); //If it's not squared and optimized will be executed the MxN num_elems_read_per_iteration = 1; num_elems_processed_per_iteration = 1; num_elems_horizontal_window = 1; const bool is_nhwc = data_layout == DataLayout::NHWC; if(is_square) { switch(input->data_type()) { case DataType::QASYMM8: if(is_nhwc) { num_elems_processed_per_iteration = 16; break; } switch(pool_size_x) { case 2: num_elems_read_per_iteration = 16; num_elems_processed_per_iteration = (pool_stride_x == 2) ? 8 : 15; num_elems_horizontal_window = (pool_stride_x == 2) ? 8 : 16; break; case 3: num_elems_read_per_iteration = 16; num_elems_processed_per_iteration = (pool_stride_x == 2) ? 7 : 14; num_elems_horizontal_window = (pool_stride_x == 2) ? 8 : 16; break; default: break; } break; #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC case DataType::F16: if(is_nhwc) { num_elems_processed_per_iteration = 8; break; } switch(pool_size_x) { case 2: case 3: num_elems_read_per_iteration = 4; num_elems_processed_per_iteration = 1; num_elems_horizontal_window = 1; break; default: break; } break; #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */ case DataType::F32: if(is_nhwc) { num_elems_processed_per_iteration = 4; break; } switch(pool_size_x) { case 2: num_elems_read_per_iteration = 2; break; case 3: num_elems_read_per_iteration = 4; // We use vload4 for pooling3 break; case 7: num_elems_read_per_iteration = 8; // We use vload8 for pooling7 break; default: break; } num_elems_processed_per_iteration = 1; num_elems_horizontal_window = 1; break; default: ARM_COMPUTE_ERROR("Element size not supported"); break; } } else { if(is_nhwc) { num_elems_processed_per_iteration = 16 / input->element_size(); } } bool window_changed = false; Window win{}; if(data_layout == DataLayout::NCHW) { // Number of iterations in X dimension const int num_iterations_x = (pooled_w + num_elems_processed_per_iteration - 1) / num_elems_processed_per_iteration; // Upper limit for the number of right/bottom border elements that are accessed const int upper_bound_w = ((num_iterations_x - 1) * num_elems_processed_per_iteration * pool_stride_x - pool_pad_left + num_elems_read_per_iteration) - input_width; const int upper_bound_h = ((pooled_h - 1) * pool_stride_y - pool_pad_top + pool_size_y) - input_height; border_size = BorderSize(pool_pad_top, pool_pad_right, pool_pad_bottom, pool_pad_left); border_size.right = std::max(upper_bound_w, pool_pad_right); border_size.bottom = std::max(upper_bound_h, pool_pad_bottom); TensorShape output_shape{ input->tensor_shape() }; output_shape.set(0, pooled_w); output_shape.set(1, pooled_h); TensorInfo output_info(input->clone()->set_tensor_shape(output_shape)); win = calculate_max_window(output_info, Steps(num_elems_processed_per_iteration)); AccessWindowStatic input_access(input, -pool_pad_left, -pool_pad_top, input_width + border_size.right, input_height + border_size.bottom); AccessWindowHorizontal output_access(output, 0, num_elems_horizontal_window); window_changed = update_window_and_padding(win, input_access, output_access); output_access.set_valid_region(win, ValidRegion(Coordinates(), output->tensor_shape())); } else { TensorShape output_shape{ input->tensor_shape() }; output_shape.set(1, pooled_w); output_shape.set(2, pooled_h); TensorInfo output_info(input->clone()->set_tensor_shape(output_shape)); win = calculate_max_window(output_info, Steps(num_elems_processed_per_iteration)); AccessWindowHorizontal input_access(input, 0, num_elems_processed_per_iteration); AccessWindowHorizontal output_access(output, 0, num_elems_processed_per_iteration); window_changed = update_window_and_padding(win, input_access, output_access); output_access.set_valid_region(win, ValidRegion(Coordinates(), output->tensor_shape())); } Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{}; return std::make_pair(err, win); } } // namespace NEPoolingLayerKernel::NEPoolingLayerKernel() : _func(nullptr), _input(nullptr), _output(nullptr), _pool_info(), _num_elems_processed_per_iteration(0), _border_size(0), _is_square(false) { } BorderSize NEPoolingLayerKernel::border_size() const { return _border_size; } void NEPoolingLayerKernel::configure(const ITensor *input, ITensor *output, const PoolingLayerInfo &pool_info) { ARM_COMPUTE_ERROR_ON_NULLPTR(input, output); const PadStrideInfo pad_stride_info = pool_info.pad_stride_info(); const bool is_global_pooling = pool_info.is_global_pooling(); const int pool_stride_x = pad_stride_info.stride().first; // Get data layout const DataLayout data_layout = input->info()->data_layout(); const int idx_width = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH); const int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT); // Update pool size in case of global pooling const Size2D pool_size( is_global_pooling ? input->info()->dimension(idx_width) : pool_info.pool_size().width, is_global_pooling ? input->info()->dimension(idx_height) : pool_info.pool_size().height); // Validate pool info before calling scaled_dimensions ARM_COMPUTE_ERROR_THROW_ON(validate_arguments_pool_info(pool_size.x(), pool_size.y())); // Check output dimensions unsigned int pooled_w, pooled_h; std::tie(pooled_w, pooled_h) = scaled_dimensions(input->info()->dimension(idx_width), input->info()->dimension(idx_height), pool_size.x(), pool_size.y(), pad_stride_info); // Perform validation step ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), output->info(), pool_info, pooled_w, pooled_h)); // Set instance variables _input = input; _output = output; _pool_info = pool_info; _is_square = (pool_size.x() == pool_size.y()); // Get data type const DataType data_type = input->info()->data_type(); const bool is_nchw = data_layout == DataLayout::NCHW; if(data_type == DataType::QASYMM8) { if(pool_size.x() == 2 && pool_stride_x < 3 && _is_square) { if(is_nchw) { _func = &NEPoolingLayerKernel::pooling2_qasymm8_nchw; } else { _func = &NEPoolingLayerKernel::poolingMxN_qasymm8_nhwc; } } else if(pool_size.x() == 3 && pool_stride_x < 3 && _is_square) { if(is_nchw) { _func = &NEPoolingLayerKernel::pooling3_qasymm8_nchw; } else { _func = &NEPoolingLayerKernel::poolingMxN_qasymm8_nhwc; } } else { if(is_nchw) { _func = &NEPoolingLayerKernel::poolingMxN_qasymm8_nchw; } else { _func = &NEPoolingLayerKernel::poolingMxN_qasymm8_nhwc; } } } else if(data_type == DataType::F16) { if(_is_square) { switch(pool_size.x()) { case 2: { if(is_nchw) { _func = &NEPoolingLayerKernel::pooling2_f16_nchw; } else { _func = &NEPoolingLayerKernel::poolingMxN_f16_nhwc; } } break; case 3: { if(is_nchw) { _func = &NEPoolingLayerKernel::pooling3_f16_nchw; } else { _func = &NEPoolingLayerKernel::poolingMxN_f16_nhwc; } } break; default: { if(is_nchw) { _func = &NEPoolingLayerKernel::poolingMxN_f16_nchw; } else { _func = &NEPoolingLayerKernel::poolingMxN_f16_nhwc; } break; } break; } } else { if(is_nchw) { _func = &NEPoolingLayerKernel::poolingMxN_f16_nchw; } else { _func = &NEPoolingLayerKernel::poolingMxN_f16_nhwc; } } } else if(data_type == DataType::F32) { if(_is_square) { switch(pool_size.x()) { case 2: { if(is_nchw) { _func = &NEPoolingLayerKernel::pooling2_f32_nchw; } else { _func = &NEPoolingLayerKernel::poolingMxN_f32_nhwc; } break; } case 3: { if(is_nchw) { _func = &NEPoolingLayerKernel::pooling3_f32_nchw; } else { _func = &NEPoolingLayerKernel::poolingMxN_f32_nhwc; } break; } case 7: { if(is_nchw) { _func = &NEPoolingLayerKernel::pooling7_f32_nchw; } else { _func = &NEPoolingLayerKernel::poolingMxN_f32_nhwc; } break; } default: { if(is_nchw) { _func = &NEPoolingLayerKernel::poolingMxN_f32_nchw; } else { _func = &NEPoolingLayerKernel::poolingMxN_f32_nhwc; } break; } } } else { if(is_nchw) { _func = &NEPoolingLayerKernel::poolingMxN_f32_nchw; } else { _func = &NEPoolingLayerKernel::poolingMxN_f32_nhwc; } } } // Configure kernel window auto win_config = validate_and_configure_window(input->info(), output->info(), pool_info, _num_elems_processed_per_iteration, _border_size, pooled_w, pooled_h, pool_size.x(), pool_size.y()); ARM_COMPUTE_ERROR_THROW_ON(win_config.first); INEKernel::configure(win_config.second); } void NEPoolingLayerKernel::pooling2_qasymm8_nchw(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding) { Iterator input(_input, window_input); Iterator output(_output, window); constexpr int pool_size = 2; int pool_stride_x = 0; int pool_stride_y = 0; const int pool_pad_right = _pool_info.pad_stride_info().pad_right(); const int pool_pad_top = _pool_info.pad_stride_info().pad_top(); const int pool_pad_left = _pool_info.pad_stride_info().pad_left(); const int pool_pad_bottom = _pool_info.pad_stride_info().pad_bottom(); std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info().stride(); const int upper_bound_w = _input->info()->dimension(0) + (exclude_padding ? 0 : pool_pad_right); const int upper_bound_h = _input->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_bottom); const uint8_t *const input_top_ptr = _input->ptr_to_element(Coordinates(-static_cast(pool_pad_left), -static_cast(pool_pad_top))); const uint8_t *const input_bottom_ptr = _input->ptr_to_element(Coordinates(-static_cast(pool_pad_left), -static_cast(pool_pad_top) + 1)); const int scale_step_x = (pool_stride_x == 1) ? 2 : 1; execute_window_loop(window, [&](const Coordinates & id) { const auto top_data = vld1q_u8(reinterpret_cast(input_top_ptr + input.offset())); const auto bottom_data = vld1q_u8(reinterpret_cast(input_bottom_ptr + input.offset())); uint8x8_t lower_res = {}; uint8x8_t upper_res = {}; if(pooling_type != PoolingType::MAX) { const uint16x8x2_t top_data_u16 = { { vmovl_u8(vget_low_u8(top_data)), vmovl_u8(vget_high_u8(top_data)) } }; const uint16x8x2_t bottom_data_u16 = { { vmovl_u8(vget_low_u8(bottom_data)), vmovl_u8(vget_high_u8(bottom_data)) } }; // Add rows const uint16x8x2_t vrsum = { { vaddq_u16(top_data_u16.val[0], bottom_data_u16.val[0]), vaddq_u16(top_data_u16.val[1], bottom_data_u16.val[1]), } }; // Pair-wise add row data const uint16x4x2_t vpsum = { { vpadd_u16(vget_low_u16(vrsum.val[0]), vget_high_u16(vrsum.val[0])), vpadd_u16(vget_low_u16(vrsum.val[1]), vget_high_u16(vrsum.val[1])), } }; uint16x8_t res_lower = vcombine_u16(vpsum.val[0], vpsum.val[1]); // Scale lower result scale_vector_s16x8(exclude_padding, res_lower, id, 0, scale_step_x, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y); lower_res = vmovn_u16(res_lower); // Compute upper result for stride_x == 1 if(pool_stride_x == 1) { // Shifted row sum const uint16x8x2_t vrsum_shifted = { { vextq_u16(vrsum.val[0], vrsum.val[1], 1), vextq_u16(vrsum.val[1], vrsum.val[1], 1) } }; // Pair-wise add shifted row const uint16x4x2_t vpsum_shifted = { { vpadd_u16(vget_low_u16(vrsum_shifted.val[0]), vget_high_u16(vrsum_shifted.val[0])), vpadd_u16(vget_low_u16(vrsum_shifted.val[1]), vget_high_u16(vrsum_shifted.val[1])), } }; uint16x8_t res_upper = vcombine_u16(vpsum_shifted.val[0], vpsum_shifted.val[1]); // Scale lower result scale_vector_s16x8(exclude_padding, res_upper, id, 1, 2, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y); upper_res = vmovn_u16(res_upper); } } else { const uint8x16_t max_data = vmaxq_u8(top_data, bottom_data); lower_res = vpmax_u8(vget_low_u8(max_data), vget_high_u8(max_data)); if(pool_stride_x == 1) { const uint8x16_t max_data_shifted = vextq_u8(max_data, max_data, 1); upper_res = vpmax_u8(vget_low_u8(max_data_shifted), vget_high_u8(max_data_shifted)); } } const QuantizationInfo &input_qinfo = _input->info()->quantization_info(); const QuantizationInfo &output_qinfo = _output->info()->quantization_info(); if(input_qinfo != output_qinfo) { const auto requantized_output = vquantize(vdequantize(vcombine_u8(lower_res, upper_res), input_qinfo), output_qinfo); lower_res = vget_low_u8(requantized_output); upper_res = vget_high_u8(requantized_output); } // Store result if(pool_stride_x == 1) { const uint8x8x2_t res = { { lower_res, upper_res } }; vst2_u8(reinterpret_cast(output.ptr()), res); } else { vst1_u8(reinterpret_cast(output.ptr()), lower_res); } }, input, output); } void NEPoolingLayerKernel::pooling3_f16_nchw(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding) { ARM_COMPUTE_UNUSED(pooling_type); ARM_COMPUTE_UNUSED(exclude_padding); #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC Iterator input(_input, window_input); Iterator output(_output, window); constexpr const int pool_size = 3; const int pool_pad_right = _pool_info.pad_stride_info().pad_right(); const int pool_pad_top = _pool_info.pad_stride_info().pad_top(); const int pool_pad_left = _pool_info.pad_stride_info().pad_left(); const int pool_pad_bottom = _pool_info.pad_stride_info().pad_bottom(); int pool_stride_x = 0; int pool_stride_y = 0; std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info().stride(); const int upper_bound_w = _input->info()->dimension(0) + (exclude_padding ? 0 : pool_pad_right); const int upper_bound_h = _input->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_bottom); const unsigned char *const input_top_ptr = _input->ptr_to_element(Coordinates(-static_cast(pool_pad_left), -static_cast(pool_pad_top))); const unsigned char *const input_middle_ptr = _input->ptr_to_element(Coordinates(-static_cast(pool_pad_left), -static_cast(pool_pad_top) + 1)); const unsigned char *const input_bottom_ptr = _input->ptr_to_element(Coordinates(-static_cast(pool_pad_left), -static_cast(pool_pad_top) + 2)); execute_window_loop(window, [&](const Coordinates & id) { float16x4_t top_data = vld1_f16(reinterpret_cast(input_top_ptr + input.offset())); float16x4_t middle_data = vld1_f16(reinterpret_cast(input_middle_ptr + input.offset())); float16x4_t bottom_data = vld1_f16(reinterpret_cast(input_bottom_ptr + input.offset())); float16x4_t res = {}; // Get power of 2 in case of l2 pooling if(pooling_type == PoolingType::L2) { top_data = vmul_f16(top_data, top_data); middle_data = vmul_f16(middle_data, middle_data); bottom_data = vmul_f16(bottom_data, bottom_data); } if(pooling_type != PoolingType::MAX) { // Calculate scale const float scale = calculate_avg_scale(exclude_padding, DataLayout::NCHW, id, pool_size, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y); const float16x4_t scale_v = vdup_n_f16(scale); // Perform pooling const float16x4_t sum_data = vadd_f16(vadd_f16(top_data, bottom_data), middle_data); res = vpadd_f16(vset_lane_f16(0.f, sum_data, 3), sum_data); res = vmul_f16(vpadd_f16(res, res), scale_v); } else { const float16x4_t max_data = vmax_f16(vmax_f16(top_data, bottom_data), middle_data); res = vpmax_f16(vset_lane_f16(-std::numeric_limits::max(), max_data, 3), max_data); res = vpmax_f16(res, res); } // Calculate square-root in case of l2 pooling if(pooling_type == PoolingType::L2) { res = vinv_f16(vinvsqrt_f16(res)); } *(reinterpret_cast(output.ptr())) = vget_lane_f16(res, 0); }, input, output); #else /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */ ARM_COMPUTE_UNUSED(window_input); ARM_COMPUTE_UNUSED(window); ARM_COMPUTE_ERROR("FP16 Not supported! Recompile the library with arch=arm64-v8.2-a"); #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */ } void NEPoolingLayerKernel::pooling2_f16_nchw(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding) { ARM_COMPUTE_UNUSED(pooling_type); ARM_COMPUTE_UNUSED(exclude_padding); #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC Iterator input(_input, window_input); Iterator output(_output, window); constexpr int pool_size = 2; const int pool_pad_right = _pool_info.pad_stride_info().pad_right(); const int pool_pad_top = _pool_info.pad_stride_info().pad_top(); const int pool_pad_left = _pool_info.pad_stride_info().pad_left(); const int pool_pad_bottom = _pool_info.pad_stride_info().pad_bottom(); int pool_stride_x, pool_stride_y = 0; std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info().stride(); const int upper_bound_w = _input->info()->dimension(0) + (exclude_padding ? 0 : pool_pad_right); const int upper_bound_h = _input->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_bottom); const unsigned char *const input_top_ptr = _input->ptr_to_element(Coordinates(-static_cast(pool_pad_left), -static_cast(pool_pad_top))); const unsigned char *const input_bottom_ptr = _input->ptr_to_element(Coordinates(-static_cast(pool_pad_left), -static_cast(pool_pad_top) + 1)); execute_window_loop(window, [&](const Coordinates & id) { float16x4_t top_data = vld1_f16(reinterpret_cast(input_top_ptr + input.offset())); float16x4_t bottom_data = vld1_f16(reinterpret_cast(input_bottom_ptr + input.offset())); float16x4_t res = {}; // Get power of 2 in case of l2 pooling if(pooling_type == PoolingType::L2) { top_data = vmul_f16(top_data, top_data); bottom_data = vmul_f16(bottom_data, bottom_data); } if(pooling_type != PoolingType::MAX) { const float scale = calculate_avg_scale(exclude_padding, DataLayout::NCHW, id, pool_size, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y); const float16x4_t scale_v = vdup_n_f16(scale); const float16x4_t sum_data = vadd_f16(top_data, bottom_data); res = vmul_f16(vpadd_f16(sum_data, sum_data), scale_v); } else { const float16x4_t max_data = vmax_f16(top_data, bottom_data); res = vpmax_f16(max_data, max_data); } // Calculate square-root in case of l2 pooling if(pooling_type == PoolingType::L2) { res = vinv_f16(vinvsqrt_f16(res)); } // Store result *(reinterpret_cast(output.ptr())) = vget_lane_f16(res, 0); }, input, output); #else /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */ ARM_COMPUTE_UNUSED(window_input); ARM_COMPUTE_UNUSED(window); ARM_COMPUTE_ERROR("FP16 Not supported! Recompile the library with arch=arm64-v8.2-a"); #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */ } void NEPoolingLayerKernel::pooling3_qasymm8_nchw(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding) { Iterator input(_input, window_input); Iterator output(_output, window); constexpr int pool_size = 3; const int pool_pad_right = _pool_info.pad_stride_info().pad_right(); const int pool_pad_top = _pool_info.pad_stride_info().pad_top(); const int pool_pad_left = _pool_info.pad_stride_info().pad_left(); const int pool_pad_bottom = _pool_info.pad_stride_info().pad_bottom(); int pool_stride_x = 0; int pool_stride_y = 0; std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info().stride(); const int upper_bound_w = _input->info()->dimension(0) + (exclude_padding ? 0 : pool_pad_right); const int upper_bound_h = _input->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_bottom); const QuantizationInfo &input_qinfo = _input->info()->quantization_info(); const QuantizationInfo &output_qinfo = _output->info()->quantization_info(); const uint8_t *const input_top_ptr = _input->ptr_to_element(Coordinates(-static_cast(pool_pad_left), -static_cast(pool_pad_top))); const uint8_t *const input_middle_ptr = _input->ptr_to_element(Coordinates(-static_cast(pool_pad_left), -static_cast(pool_pad_top) + 1)); const uint8_t *const input_bottom_ptr = _input->ptr_to_element(Coordinates(-static_cast(pool_pad_left), -static_cast(pool_pad_top) + 2)); execute_window_loop(window, [&](const Coordinates & id) { const auto top_data = vld1q_u8(reinterpret_cast(input_top_ptr + input.offset())); const auto middle_data = vld1q_u8(reinterpret_cast(input_middle_ptr + input.offset())); const auto bottom_data = vld1q_u8(reinterpret_cast(input_bottom_ptr + input.offset())); uint8x8_t fres = {}; uint8x16_t fqres = {}; if(pooling_type == PoolingType::AVG) { // Convert data to u16 const uint16x8x2_t top_data_u16 = { { vmovl_u8(vget_low_u8(top_data)), vmovl_u8(vget_high_u8(top_data)) } }; const uint16x8x2_t middle_data_u16 = { { vmovl_u8(vget_low_u8(middle_data)), vmovl_u8(vget_high_u8(middle_data)) } }; const uint16x8x2_t bottom_data_u16 = { { vmovl_u8(vget_low_u8(bottom_data)), vmovl_u8(vget_high_u8(bottom_data)) } }; // Calculate row sums const uint16x8x2_t vrsum = { { vaddq_u16(vaddq_u16(top_data_u16.val[0], bottom_data_u16.val[0]), middle_data_u16.val[0]), vaddq_u16(vaddq_u16(top_data_u16.val[1], bottom_data_u16.val[1]), middle_data_u16.val[1]), } }; const uint16x8x2_t vrsum_shifted_1 = { { vextq_u16(vrsum.val[0], vrsum.val[1], 1), vextq_u16(vrsum.val[1], vrsum.val[1], 1) } }; const uint16x8x2_t vrsum_shifted_2 = { { vextq_u16(vrsum.val[0], vrsum.val[1], 2), vextq_u16(vrsum.val[1], vrsum.val[1], 2) } }; // Calculate final sum uint16x8x2_t final_sum = { { vaddq_u16(vaddq_u16(vrsum.val[0], vrsum_shifted_1.val[0]), vrsum_shifted_2.val[0]), vaddq_u16(vaddq_u16(vrsum.val[1], vrsum_shifted_1.val[1]), vrsum_shifted_2.val[1]), } }; if(pool_stride_x == 2) { uint16x8_t res = { vgetq_lane_u16(final_sum.val[0], 0), vgetq_lane_u16(final_sum.val[0], 2), vgetq_lane_u16(final_sum.val[0], 4), vgetq_lane_u16(final_sum.val[0], 6), vgetq_lane_u16(final_sum.val[1], 0), vgetq_lane_u16(final_sum.val[1], 2), vgetq_lane_u16(final_sum.val[1], 4), vgetq_lane_u16(final_sum.val[1], 6), }; scale_vector_s16x8(exclude_padding, res, id, 0, 1, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y); fres = vmovn_u16(res); } else { // Scale lower result scale_vector_s16x8(exclude_padding, final_sum.val[0], id, 0, 1, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y); // Scale lower result scale_vector_s16x8(exclude_padding, final_sum.val[1], id, 8, 1, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y); fqres = vcombine_u8(vmovn_u16(final_sum.val[0]), vmovn_u16(final_sum.val[1])); } } else { const uint8x16_t max_data = vmaxq_u8(vmaxq_u8(top_data, bottom_data), middle_data); const uint8x16_t max_data_shift1 = vextq_u8(max_data, max_data, 1); const uint8x16_t max_data_shift2 = vextq_u8(max_data, max_data, 2); const uint8x16_t final_max = vmaxq_u8(vmaxq_u8(max_data, max_data_shift1), max_data_shift2); if(pool_stride_x == 2) { const uint8x8x2_t table = { { vget_low_u8(final_max), vget_high_u8(final_max) } }; static const uint8x8_t lookup_val = { 0, 2, 4, 6, 8, 10, 12, 14 }; fres = vtbl2_u8(table, lookup_val); } else { fqres = final_max; } } // Store result if(pool_stride_x == 1) { if(input_qinfo != output_qinfo) { fqres = vquantize(vdequantize(fqres, input_qinfo), output_qinfo); } vst1q_u8(reinterpret_cast(output.ptr()), fqres); } else { if(input_qinfo != output_qinfo) { fres = vquantize(vdequantize(fres, input_qinfo), output_qinfo); } vst1_u8(reinterpret_cast(output.ptr()), fres); } }, input, output); } void NEPoolingLayerKernel::poolingMxN_f16_nchw(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding) { ARM_COMPUTE_UNUSED(pooling_type); ARM_COMPUTE_UNUSED(exclude_padding); #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC Iterator input(_input, window_input); Iterator output(_output, window); const int pool_size_x = _pool_info.is_global_pooling() ? _input->info()->tensor_shape().x() : _pool_info.pool_size().width; const int pool_size_y = _pool_info.is_global_pooling() ? _input->info()->tensor_shape().y() : _pool_info.pool_size().height; const int pool_pad_right = _pool_info.pad_stride_info().pad_right(); const int pool_pad_top = _pool_info.pad_stride_info().pad_top(); const int pool_pad_left = _pool_info.pad_stride_info().pad_left(); const int pool_pad_bottom = _pool_info.pad_stride_info().pad_bottom(); int pool_stride_x = 0; int pool_stride_y = 0; std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info().stride(); const int upper_bound_w = _input->info()->dimension(0) + (exclude_padding ? 0 : pool_pad_right); const int upper_bound_h = _input->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_bottom); execute_window_loop(window, [&](const Coordinates & id) { float16_t res = 0.0f; float16x8_t vres = vdupq_n_f16(0.0f); if(pooling_type != PoolingType::MAX) { // Calculate scale const float scale = calculate_avg_scale(exclude_padding, DataLayout::NCHW, id, pool_size_x, pool_size_y, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y); // Perform pooling for(int y = 0; y < pool_size_y; ++y) { int x = 0; for(; x <= (pool_size_x - 8); x += 8) { const float16x8_t data = vld1q_f16(reinterpret_cast(input.ptr() + (x - pool_pad_left) * _input->info()->strides_in_bytes().x() + (y - pool_pad_top) * _input->info()->strides_in_bytes().y())); // Get power of 2 in case of l2 pooling and accumulate if(pooling_type == PoolingType::L2) { vres = vaddq_f16(vres, vmulq_f16(data, data)); } else { vres = vaddq_f16(vres, data); } } // Leftover for loop for(; x < pool_size_x; ++x) { float16_t data = *(reinterpret_cast(input.ptr() + (x - pool_pad_left) * _input->info()->strides_in_bytes().x() + (y - pool_pad_top) * _input->info()->strides_in_bytes().y())); // Get power of 2 in case of l2 pooling if(pooling_type == PoolingType::L2) { data *= data; } res += data; } } // Reduction float16x4_t tmp = vpadd_f16(vget_high_f16(vres), vget_low_f16(vres)); res += vget_lane_f16(tmp, 0); res += vget_lane_f16(tmp, 1); res += vget_lane_f16(tmp, 2); res += vget_lane_f16(tmp, 3); // Divide by scale res *= scale; } else { float16x8_t vres = vdupq_n_f16(std::numeric_limits::lowest()); res = std::numeric_limits::lowest(); for(int y = 0; y < pool_size_y; ++y) { int x = 0; for(; x <= (pool_size_x - 8); x += 8) { const float16x8_t data = vld1q_f16(reinterpret_cast(input.ptr() + (x - pool_pad_left) * _input->info()->strides_in_bytes().x() + (y - pool_pad_top) * _input->info()->strides_in_bytes().y())); vres = vmaxq_f16(vres, data); } // Leftover for loop for(; x < pool_size_x; ++x) { const float16_t data = *(reinterpret_cast(input.ptr() + (x - pool_pad_left) * _input->info()->strides_in_bytes().x() + (y - pool_pad_top) * _input->info()->strides_in_bytes().y())); res = std::max(res, data); } } float16x4_t tmp = vpmax_f16(vget_high_f16(vres), vget_low_f16(vres)); res = std::max(res, vget_lane_f16(tmp, 0)); res = std::max(res, vget_lane_f16(tmp, 1)); res = std::max(res, vget_lane_f16(tmp, 2)); res = std::max(res, vget_lane_f16(tmp, 3)); } // Calculate square-root in case of l2 pooling if(pooling_type == PoolingType::L2) { res = std::sqrt(res); } // Store result *(reinterpret_cast(output.ptr())) = res; }, input, output); #else /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */ ARM_COMPUTE_UNUSED(window_input); ARM_COMPUTE_UNUSED(window); ARM_COMPUTE_ERROR("FP16 Not supported! Recompile the library with arch=arm64-v8.2-a"); #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */ } void NEPoolingLayerKernel::poolingMxN_f16_nhwc(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding) { ARM_COMPUTE_UNUSED(pooling_type); ARM_COMPUTE_UNUSED(exclude_padding); #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC Iterator input(_input, window_input); Iterator output(_output, window); const int pool_size_x = _pool_info.is_global_pooling() ? _input->info()->tensor_shape().y() : _pool_info.pool_size().width; const int pool_size_y = _pool_info.is_global_pooling() ? _input->info()->tensor_shape().z() : _pool_info.pool_size().height; const int pool_pad_right = _pool_info.pad_stride_info().pad_right(); const int pool_pad_top = _pool_info.pad_stride_info().pad_top(); const int pool_pad_left = _pool_info.pad_stride_info().pad_left(); const int pool_pad_bottom = _pool_info.pad_stride_info().pad_bottom(); int pool_stride_x = 0; int pool_stride_y = 0; std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info().stride(); const int upper_bound_w = _input->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_right); const int upper_bound_h = _input->info()->dimension(2) + (exclude_padding ? 0 : pool_pad_bottom); float16x8_t vres; execute_window_loop(window, [&](const Coordinates & id) { const int idx_width = id.y() * pool_stride_x; const int idx_height = id.z() * pool_stride_y; const int pool_limit_y = pool_pad_top - idx_height; const int pool_limit_x = pool_pad_left - idx_width; const int pool_start_y = std::max(0, window_input.z().start() + pool_limit_y); const int pool_end_y = std::min(pool_size_y, window_input.z().end() + pool_limit_y); const int pool_start_x = std::max(0, window_input.y().start() + pool_limit_x); const int pool_end_x = std::min(pool_size_x, window_input.y().end() + pool_limit_x); if(pooling_type != PoolingType::MAX) { // Calculate scale const float scale = calculate_avg_scale(exclude_padding, DataLayout::NHWC, id, pool_size_x, pool_size_y, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y); const float16x8_t scale_v = vdupq_n_f16(scale); // Perform pooling vres = vdupq_n_f16(0.0f); for(int y = pool_start_y; y < pool_end_y; ++y) { for(int x = pool_start_x; x < pool_end_x; ++x) { const float16x8_t data = vld1q_f16(reinterpret_cast(input.ptr() + (x - pool_pad_left) * _input->info()->strides_in_bytes().y() + (y - pool_pad_top) * _input->info()->strides_in_bytes().z())); // Get power of 2 in case of l2 pooling and accumulate if(pooling_type == PoolingType::L2) { vres = vaddq_f16(vres, vmulq_f16(data, data)); } else { vres = vaddq_f16(vres, data); } } } // Divide by scale vres = vmulq_f16(vres, scale_v); } else { vres = vdupq_n_f16(std::numeric_limits::lowest()); for(int y = pool_start_y; y < pool_end_y; ++y) { for(int x = pool_start_x; x < pool_end_x; ++x) { const float16x8_t data = vld1q_f16(reinterpret_cast(input.ptr() + (x - pool_pad_left) * _input->info()->strides_in_bytes().y() + (y - pool_pad_top) * _input->info()->strides_in_bytes().z())); vres = vmaxq_f16(vres, data); } } } // Calculate square-root in case of l2 pooling if(pooling_type == PoolingType::L2) { float16x8_t sqrt_reciprocal = vrsqrteq_f16(vres); vres = vmulq_f16(vres, vmulq_f16(vrsqrtsq_f16(vmulq_f16(vres, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal)); } // Store result vst1q_f16(reinterpret_cast(output.ptr()), vres); }, input, output); #else /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */ ARM_COMPUTE_UNUSED(window_input); ARM_COMPUTE_UNUSED(window); ARM_COMPUTE_ERROR("FP16 Not supported! Recompile the library with arch=arm64-v8.2-a"); #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */ } void NEPoolingLayerKernel::poolingMxN_f32_nchw(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding) { Iterator input(_input, window_input); Iterator output(_output, window); const int pool_size_x = _pool_info.is_global_pooling() ? _input->info()->tensor_shape().x() : _pool_info.pool_size().width; const int pool_size_y = _pool_info.is_global_pooling() ? _input->info()->tensor_shape().y() : _pool_info.pool_size().height; const int pool_pad_right = _pool_info.pad_stride_info().pad_right(); const int pool_pad_top = _pool_info.pad_stride_info().pad_top(); const int pool_pad_left = _pool_info.pad_stride_info().pad_left(); const int pool_pad_bottom = _pool_info.pad_stride_info().pad_bottom(); int pool_stride_x = 0; int pool_stride_y = 0; std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info().stride(); const int upper_bound_w = _input->info()->dimension(0) + (exclude_padding ? 0 : pool_pad_right); const int upper_bound_h = _input->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_bottom); execute_window_loop(window, [&](const Coordinates & id) { float res = 0.0f; if(pooling_type != PoolingType::MAX) { // Calculate scale const float scale = calculate_avg_scale(exclude_padding, DataLayout::NCHW, id, pool_size_x, pool_size_y, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y); // Perform pooling float32x4_t vres = vdupq_n_f32(0.0f); for(int y = 0; y < pool_size_y; ++y) { int x = 0; for(; x <= (pool_size_x - 4); x += 4) { const float32x4_t data = vld1q_f32(reinterpret_cast(input.ptr() + (x - pool_pad_left) * _input->info()->strides_in_bytes().x() + (y - pool_pad_top) * _input->info()->strides_in_bytes().y())); // Get power of 2 in case of l2 pooling and accumulate if(pooling_type == PoolingType::L2) { vres = vmlaq_f32(vres, data, data); } else { vres = vaddq_f32(vres, data); } } // Leftover for loop for(; x < pool_size_x; ++x) { float data = *(reinterpret_cast(input.ptr() + (x - pool_pad_left) * _input->info()->strides_in_bytes().x() + (y - pool_pad_top) * _input->info()->strides_in_bytes().y())); // Get power of 2 in case of l2 pooling if(pooling_type == PoolingType::L2) { data *= data; } res += data; } } #if defined(__aarch64__) // Reduction operation available on 64 bit architectures only res += vaddvq_f32(vres); #else // __aarch64__ // Reduction float32x2_t tmp = vpadd_f32(vget_high_f32(vres), vget_low_f32(vres)); tmp = vpadd_f32(tmp, tmp); res += vget_lane_f32(tmp, 0); #endif // __aarch64__ // Divide by scale res *= scale; } else { float32x4_t vres = vdupq_n_f32(std::numeric_limits::lowest()); res = std::numeric_limits::lowest(); for(int y = 0; y < pool_size_y; ++y) { int x = 0; for(; x <= (pool_size_x - 4); x += 4) { const float32x4_t data = vld1q_f32(reinterpret_cast(input.ptr() + (x - pool_pad_left) * _input->info()->strides_in_bytes().x() + (y - pool_pad_top) * _input->info()->strides_in_bytes().y())); vres = vmaxq_f32(vres, data); } // Leftover for loop for(; x < pool_size_x; ++x) { const float data = *(reinterpret_cast(input.ptr() + (x - pool_pad_left) * _input->info()->strides_in_bytes().x() + (y - pool_pad_top) * _input->info()->strides_in_bytes().y())); res = std::max(res, data); } } #if defined(__aarch64__) // Reduction operation available on 64 bit architectures only res = std::max(vmaxvq_f32(vres), res); #else // __aarch64__ float32x2_t tmp = vpmax_f32(vget_high_f32(vres), vget_low_f32(vres)); tmp = vpmax_f32(tmp, tmp); res = std::max(res, vget_lane_f32(tmp, 0)); #endif // __aarch64__ } // Calculate square-root in case of l2 pooling if(pooling_type == PoolingType::L2) { res = std::sqrt(res); } // Store result *(reinterpret_cast(output.ptr())) = res; }, input, output); } void NEPoolingLayerKernel::pooling2_f32_nchw(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding) { Iterator input(_input, window_input); Iterator output(_output, window); constexpr int pool_size = 2; const int pool_pad_right = _pool_info.pad_stride_info().pad_right(); const int pool_pad_top = _pool_info.pad_stride_info().pad_top(); const int pool_pad_left = _pool_info.pad_stride_info().pad_left(); const int pool_pad_bottom = _pool_info.pad_stride_info().pad_bottom(); int pool_stride_x = 0; int pool_stride_y = 0; std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info().stride(); const int upper_bound_w = _input->info()->dimension(0) + (exclude_padding ? 0 : pool_pad_right); const int upper_bound_h = _input->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_bottom); const uint8_t *const input_top_ptr = _input->ptr_to_element(Coordinates(-static_cast(pool_pad_left), -static_cast(pool_pad_top))); const uint8_t *const input_bottom_ptr = _input->ptr_to_element(Coordinates(-static_cast(pool_pad_left), -static_cast(pool_pad_top) + 1)); execute_window_loop(window, [&](const Coordinates & id) { float32x2_t top_data = vld1_f32(reinterpret_cast(input_top_ptr + input.offset())); float32x2_t bottom_data = vld1_f32(reinterpret_cast(input_bottom_ptr + input.offset())); float32x2_t res = {}; float final_res = 0; // Get power of 2 in case of l2 pooling if(pooling_type == PoolingType::L2) { top_data = vmul_f32(top_data, top_data); bottom_data = vmul_f32(bottom_data, bottom_data); } if(pooling_type != PoolingType::MAX) { // Calculate scale float scale = calculate_avg_scale(exclude_padding, DataLayout::NCHW, id, pool_size, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y); const float32x2_t scale_v = vdup_n_f32(scale); // Perform pooling const float32x2_t sum_data = vadd_f32(top_data, bottom_data); res = vmul_f32(vpadd_f32(sum_data, sum_data), scale_v); } else { const float32x2_t max_data = vmax_f32(top_data, bottom_data); res = vpmax_f32(max_data, max_data); } final_res = vget_lane_f32(res, 0); // Calculate square-root in case of l2 pooling if(pooling_type == PoolingType::L2) { final_res = sqrt(final_res); } // Store result *(reinterpret_cast(output.ptr())) = final_res; }, input, output); } void NEPoolingLayerKernel::pooling3_f32_nchw(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding) { Iterator input(_input, window_input); Iterator output(_output, window); constexpr const int pool_size = 3; const int pool_pad_right = _pool_info.pad_stride_info().pad_right(); const int pool_pad_top = _pool_info.pad_stride_info().pad_top(); const int pool_pad_left = _pool_info.pad_stride_info().pad_left(); const int pool_pad_bottom = _pool_info.pad_stride_info().pad_bottom(); int pool_stride_x = 0; int pool_stride_y = 0; std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info().stride(); const int upper_bound_w = _input->info()->dimension(0) + (exclude_padding ? 0 : pool_pad_right); const int upper_bound_h = _input->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_bottom); const uint8_t *const input_top_ptr = _input->ptr_to_element(Coordinates(-static_cast(pool_pad_left), -static_cast(pool_pad_top))); const uint8_t *const input_middle_ptr = _input->ptr_to_element(Coordinates(-static_cast(pool_pad_left), -static_cast(pool_pad_top) + 1)); const uint8_t *const input_bottom_ptr = _input->ptr_to_element(Coordinates(-static_cast(pool_pad_left), -static_cast(pool_pad_top) + 2)); execute_window_loop(window, [&](const Coordinates & id) { float32x4_t top_data = vld1q_f32(reinterpret_cast(input_top_ptr + input.offset())); float32x4_t middle_data = vld1q_f32(reinterpret_cast(input_middle_ptr + input.offset())); float32x4_t bottom_data = vld1q_f32(reinterpret_cast(input_bottom_ptr + input.offset())); float32x2_t res = {}; float final_res = 0; // Get power of 2 in case of l2 pooling if(pooling_type == PoolingType::L2) { top_data = vmulq_f32(top_data, top_data); middle_data = vmulq_f32(middle_data, middle_data); bottom_data = vmulq_f32(bottom_data, bottom_data); } if(pooling_type != PoolingType::MAX) { // Calculate scale float scale = calculate_avg_scale(exclude_padding, DataLayout::NCHW, id, pool_size, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y); const float32x2_t scale_v = vdup_n_f32(scale); // Perform pooling const float32x4_t sum_data = vaddq_f32(vaddq_f32(top_data, bottom_data), middle_data); res = vpadd_f32(vget_high_f32(vsetq_lane_f32(0.f, sum_data, 3)), vget_low_f32(sum_data)); res = vmul_f32(vpadd_f32(res, res), scale_v); } else { const float32x4_t max_data = vmaxq_f32(vmaxq_f32(top_data, bottom_data), middle_data); res = vpmax_f32(vget_high_f32(vsetq_lane_f32(-std::numeric_limits::max(), max_data, 3)), vget_low_f32(max_data)); res = vpmax_f32(res, res); } final_res = vget_lane_f32(res, 0); // Calculate square-root in case of l2 pooling if(pooling_type == PoolingType::L2) { final_res = sqrt(final_res); } // Store result *(reinterpret_cast(output.ptr())) = final_res; }, input, output); } void NEPoolingLayerKernel::pooling7_f32_nchw(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding) { Iterator input(_input, window_input); Iterator output(_output, window); constexpr const int pool_size = 7; const int pool_pad_right = _pool_info.pad_stride_info().pad_right(); const int pool_pad_top = _pool_info.pad_stride_info().pad_top(); const int pool_pad_left = _pool_info.pad_stride_info().pad_left(); const int pool_pad_bottom = _pool_info.pad_stride_info().pad_bottom(); int pool_stride_x = 0; int pool_stride_y = 0; std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info().stride(); const int upper_bound_w = _input->info()->dimension(0) + (exclude_padding ? 0 : pool_pad_right); const int upper_bound_h = _input->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_bottom); std::array input_ptrs{ {} }; for(int i = 0; i < pool_size; ++i) { input_ptrs[i] = _input->ptr_to_element(Coordinates(-static_cast(pool_pad_left), -static_cast(pool_pad_top) + i)); } execute_window_loop(window, [&](const Coordinates & id) { float32x2_t res = {}; float final_res = 0.f; if(pooling_type != PoolingType::MAX) { // Calculate scale float scale = calculate_avg_scale(exclude_padding, DataLayout::NCHW, id, pool_size, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y); const float32x2_t scale_v = vdup_n_f32(scale); // Perform pooling float32x4x2_t data = vld2q_f32(reinterpret_cast(input_ptrs[0] + input.offset())); // Get power of 2 in case of l2 pooling if(pooling_type == PoolingType::L2) { data.val[0] = vmulq_f32(data.val[0], data.val[0]); data.val[1] = vmulq_f32(data.val[1], data.val[1]); } float32x4_t sum_data = vaddq_f32(data.val[0], vsetq_lane_f32(0.f, data.val[1], 3)); for(int i = 1; i < pool_size; ++i) { data = vld2q_f32(reinterpret_cast(input_ptrs[i] + input.offset())); // Get power of 2 in case of l2 pooling if(pooling_type == PoolingType::L2) { data.val[0] = vmulq_f32(data.val[0], data.val[0]); data.val[1] = vmulq_f32(data.val[1], data.val[1]); } sum_data = vaddq_f32(sum_data, data.val[0]); sum_data = vaddq_f32(sum_data, vsetq_lane_f32(0.f, data.val[1], 3)); } res = vpadd_f32(vget_high_f32(sum_data), vget_low_f32(sum_data)); res = vmul_f32(vpadd_f32(res, res), scale_v); } else { float32x4x2_t max_data = vld2q_f32(reinterpret_cast(input_ptrs[0] + input.offset())); for(int i = 1; i < pool_size; ++i) { const float32x4x2_t data = vld2q_f32(reinterpret_cast(input_ptrs[i] + input.offset())); max_data = vmax2q_f32(max_data, data); } res = vpmax_f32(vget_high_f32(vsetq_lane_f32(-std::numeric_limits::max(), max_data.val[1], 3)), vget_low_f32(max_data.val[1])); res = vpmax_f32(res, vpmax_f32(vget_high_f32(max_data.val[0]), vget_low_f32(max_data.val[0]))); res = vpmax_f32(res, res); } final_res = vget_lane_f32(res, 0); // Calculate square-root in case of l2 pooling if(pooling_type == PoolingType::L2) { final_res = sqrt(final_res); } // Store result *(reinterpret_cast(output.ptr())) = final_res; }, input, output); } void NEPoolingLayerKernel::poolingMxN_f32_nhwc(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding) { Iterator input(_input, window_input); Iterator output(_output, window); const int pool_size_x = _pool_info.is_global_pooling() ? _input->info()->tensor_shape().y() : _pool_info.pool_size().width; const int pool_size_y = _pool_info.is_global_pooling() ? _input->info()->tensor_shape().z() : _pool_info.pool_size().height; const int pool_pad_right = _pool_info.pad_stride_info().pad_right(); const int pool_pad_top = _pool_info.pad_stride_info().pad_top(); const int pool_pad_left = _pool_info.pad_stride_info().pad_left(); const int pool_pad_bottom = _pool_info.pad_stride_info().pad_bottom(); int pool_stride_x = 0; int pool_stride_y = 0; std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info().stride(); const int upper_bound_w = _input->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_right); const int upper_bound_h = _input->info()->dimension(2) + (exclude_padding ? 0 : pool_pad_bottom); float32x4_t vres; execute_window_loop(window, [&](const Coordinates & id) { const int idx_width = id.y() * pool_stride_x; const int idx_height = id.z() * pool_stride_y; const int pool_limit_y = pool_pad_top - idx_height; const int pool_limit_x = pool_pad_left - idx_width; const int pool_start_y = std::max(0, window_input.z().start() + pool_limit_y); const int pool_end_y = std::min(pool_size_y, window_input.z().end() + pool_limit_y); const int pool_start_x = std::max(0, window_input.y().start() + pool_limit_x); const int pool_end_x = std::min(pool_size_x, window_input.y().end() + pool_limit_x); if(pooling_type != PoolingType::MAX) { // Calculate scale const float scale = calculate_avg_scale(exclude_padding, DataLayout::NHWC, id, pool_size_x, pool_size_y, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y); const float32x4_t scale_v = vdupq_n_f32(scale); // Perform pooling vres = vdupq_n_f32(0.0f); for(int y = pool_start_y; y < pool_end_y; ++y) { for(int x = pool_start_x; x < pool_end_x; ++x) { const float32x4_t data = vld1q_f32(reinterpret_cast(input.ptr() + (x - pool_pad_left) * _input->info()->strides_in_bytes().y() + (y - pool_pad_top) * _input->info()->strides_in_bytes().z())); // Get power of 2 in case of l2 pooling and accumulate if(pooling_type == PoolingType::L2) { vres = vmlaq_f32(vres, data, data); } else { vres = vaddq_f32(vres, data); } } } // Divide by scale vres = vmulq_f32(vres, scale_v); } else { vres = vdupq_n_f32(std::numeric_limits::lowest()); for(int y = pool_start_y; y < pool_end_y; ++y) { for(int x = pool_start_x; x < pool_end_x; ++x) { const float32x4_t data = vld1q_f32(reinterpret_cast(input.ptr() + (x - pool_pad_left) * _input->info()->strides_in_bytes().y() + (y - pool_pad_top) * _input->info()->strides_in_bytes().z())); vres = vmaxq_f32(vres, data); } } } // Calculate square-root in case of l2 pooling if(pooling_type == PoolingType::L2) { vres = vmulq_f32(vres, vinvsqrtq_f32(vres)); } // Store result vst1q_f32(reinterpret_cast(output.ptr()), vres); }, input, output); } void NEPoolingLayerKernel::poolingMxN_qasymm8_nchw(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding) { Iterator input(_input, window_input); Iterator output(_output, window); const int pool_size_x = _pool_info.is_global_pooling() ? _input->info()->tensor_shape().x() : _pool_info.pool_size().width; const int pool_size_y = _pool_info.is_global_pooling() ? _input->info()->tensor_shape().y() : _pool_info.pool_size().height; const int pool_pad_right = _pool_info.pad_stride_info().pad_right(); const int pool_pad_top = _pool_info.pad_stride_info().pad_top(); const int pool_pad_left = _pool_info.pad_stride_info().pad_left(); const int pool_pad_bottom = _pool_info.pad_stride_info().pad_bottom(); int pool_stride_x = 0; int pool_stride_y = 0; std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info().stride(); const int upper_bound_w = _input->info()->dimension(0) + (exclude_padding ? 0 : pool_pad_right); const int upper_bound_h = _input->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_bottom); execute_window_loop(window, [&](const Coordinates & id) { uint8_t res = 0; if(pooling_type != PoolingType::MAX) { uint32x4_t vres = vdupq_n_u32(0); uint32_t sres = 0; // Calculate scale const float scale = calculate_avg_scale(exclude_padding, DataLayout::NCHW, id, pool_size_x, pool_size_y, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y); // Perform pooling for(int y = 0; y < pool_size_y; ++y) { int x = 0; for(; x <= (pool_size_x - 8); x += 8) { const uint8x8_t data = vld1_u8(reinterpret_cast(input.ptr() + (x - pool_pad_left) * _input->info()->strides_in_bytes().x() + (y - pool_pad_top) * _input->info()->strides_in_bytes().y())); const uint16x8_t data_u16 = vmovl_u8(data); vres = vaddq_u32(vres, vaddl_u16(vget_high_u16(data_u16), vget_low_u16(data_u16))); } // Leftover for loop for(; x < pool_size_x; ++x) { uint8_t data = *(reinterpret_cast(input.ptr() + (x - pool_pad_left) * _input->info()->strides_in_bytes().x() + (y - pool_pad_top) * _input->info()->strides_in_bytes().y())); sres += data; } } // Reduction const auto tmp = vpadd_u32(vget_high_u32(vres), vget_low_u32(vres)); sres += vget_lane_u32(tmp, 0) + vget_lane_u32(tmp, 1); // Divide by scale res = static_cast(support::cpp11::round(sres * scale)); } else { uint8x8_t vres = vdup_n_u8(0); res = 0; for(int y = 0; y < pool_size_y; ++y) { int x = 0; for(; x <= (pool_size_x - 8); x += 8) { const uint8x8_t data = vld1_u8(reinterpret_cast(input.ptr() + (x - pool_pad_left) * _input->info()->strides_in_bytes().x() + (y - pool_pad_top) * _input->info()->strides_in_bytes().y())); vres = vmax_u8(vres, data); } // Leftover for loop for(; x < pool_size_x; ++x) { const uint8_t data = *(reinterpret_cast(input.ptr() + (x - pool_pad_left) * _input->info()->strides_in_bytes().x() + (y - pool_pad_top) * _input->info()->strides_in_bytes().y())); res = std::max(res, data); } } // Reduce max vres = vpmax_u8(vres, vres); vres = vpmax_u8(vres, vres); vres = vpmax_u8(vres, vres); // Get max value res = std::max(res, vget_lane_u8(vres, 0)); } // Store result const QuantizationInfo &input_qinfo = _input->info()->quantization_info(); const QuantizationInfo &output_qinfo = _output->info()->quantization_info(); res = (input_qinfo != output_qinfo) ? sqcvt_qasymm8_f32(scvt_f32_qasymm8(res, input_qinfo.scale, input_qinfo.offset), output_qinfo.scale, output_qinfo.offset) : res; *(reinterpret_cast(output.ptr())) = res; }, input, output); } void NEPoolingLayerKernel::poolingMxN_qasymm8_nhwc(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding) { Iterator input(_input, window_input); Iterator output(_output, window); const int pool_size_x = _pool_info.is_global_pooling() ? _input->info()->tensor_shape().y() : _pool_info.pool_size().width; const int pool_size_y = _pool_info.is_global_pooling() ? _input->info()->tensor_shape().z() : _pool_info.pool_size().height; const int pool_pad_right = _pool_info.pad_stride_info().pad_right(); const int pool_pad_top = _pool_info.pad_stride_info().pad_top(); const int pool_pad_left = _pool_info.pad_stride_info().pad_left(); const int pool_pad_bottom = _pool_info.pad_stride_info().pad_bottom(); int pool_stride_x = 0; int pool_stride_y = 0; std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info().stride(); const int upper_bound_w = _input->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_right); const int upper_bound_h = _input->info()->dimension(2) + (exclude_padding ? 0 : pool_pad_bottom); const float32x4_t half_scale_v = vdupq_n_f32(0.5f); const QuantizationInfo &input_qinfo = _input->info()->quantization_info(); const QuantizationInfo &output_qinfo = _output->info()->quantization_info(); execute_window_loop(window, [&](const Coordinates & id) { const int idx_width = id.y() * pool_stride_x; const int idx_height = id.z() * pool_stride_y; const int pool_limit_y = pool_pad_top - idx_height; const int pool_limit_x = pool_pad_left - idx_width; const int pool_start_y = std::max(0, window_input.z().start() + pool_limit_y); const int pool_end_y = std::min(pool_size_y, window_input.z().end() + pool_limit_y); const int pool_start_x = std::max(0, window_input.y().start() + pool_limit_x); const int pool_end_x = std::min(pool_size_x, window_input.y().end() + pool_limit_x); if(pooling_type != PoolingType::MAX) { uint32x4_t vres1 = vdupq_n_u32(0); uint32x4_t vres2 = vdupq_n_u32(0); uint32x4_t vres3 = vdupq_n_u32(0); uint32x4_t vres4 = vdupq_n_u32(0); // Calculate scale const float scale = calculate_avg_scale(exclude_padding, DataLayout::NHWC, id, pool_size_x, pool_size_y, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y); const float32x4_t scale_v = vdupq_n_f32(scale); // Perform pooling for(int y = pool_start_y; y < pool_end_y; ++y) { for(int x = pool_start_x; x < pool_end_x; ++x) { const uint8x16_t data = vld1q_u8(reinterpret_cast(input.ptr() + (x - pool_pad_left) * _input->info()->strides_in_bytes().y() + (y - pool_pad_top) * _input->info()->strides_in_bytes().z())); const uint16x8_t data_u16 = vmovl_u8(vget_low_u8(data)); const uint16x8_t data2_u16 = vmovl_u8(vget_high_u8(data)); vres1 = vaddq_u32(vres1, vmovl_u16(vget_low_u16(data_u16))); vres2 = vaddq_u32(vres2, vmovl_u16(vget_high_u16(data_u16))); vres3 = vaddq_u32(vres3, vmovl_u16(vget_low_u16(data2_u16))); vres4 = vaddq_u32(vres4, vmovl_u16(vget_high_u16(data2_u16))); } } // Divide by scale and add 0.5f to round to nearest instead of rounding towards zero vres1 = vcvtq_u32_f32(vmlaq_f32(half_scale_v, vcvtq_f32_u32(vres1), scale_v)); vres2 = vcvtq_u32_f32(vmlaq_f32(half_scale_v, vcvtq_f32_u32(vres2), scale_v)); vres3 = vcvtq_u32_f32(vmlaq_f32(half_scale_v, vcvtq_f32_u32(vres3), scale_v)); vres4 = vcvtq_u32_f32(vmlaq_f32(half_scale_v, vcvtq_f32_u32(vres4), scale_v)); uint8x8_t res1 = vmovn_u16(vcombine_u16(vmovn_u32(vres1), vmovn_u32(vres2))); uint8x8_t res2 = vmovn_u16(vcombine_u16(vmovn_u32(vres3), vmovn_u32(vres4))); if(input_qinfo != output_qinfo) { const auto requantized_output = vquantize(vdequantize(vcombine_u8(res1, res2), input_qinfo), output_qinfo); res1 = vget_low_u8(requantized_output); res2 = vget_high_u8(requantized_output); } // Store result vst1_u8(output.ptr(), res1); vst1_u8(output.ptr() + 8, res2); } else { uint8x16_t vres = vdupq_n_u8(0); for(int y = pool_start_y; y < pool_end_y; ++y) { for(int x = pool_start_x; x < pool_end_x; ++x) { const uint8x16_t data = vld1q_u8(reinterpret_cast(input.ptr() + (x - pool_pad_left) * _input->info()->strides_in_bytes().y() + (y - pool_pad_top) * _input->info()->strides_in_bytes().z())); vres = vmaxq_u8(vres, data); } } // Store result vst1q_u8(output.ptr(), (input_qinfo != output_qinfo) ? vquantize(vdequantize(vres, input_qinfo), output_qinfo) : vres); } }, input, output); } Status NEPoolingLayerKernel::validate(const ITensorInfo *input, const ITensorInfo *output, const PoolingLayerInfo &pool_info) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input); unsigned int pooled_w = 0; unsigned int pooled_h = 0; unsigned int num_elems_processed_per_iteration = 0; BorderSize border_size(0); const bool is_global_pooling = pool_info.is_global_pooling(); unsigned int pool_size_x = 0; unsigned int pool_size_y = 0; // Get data layout const DataLayout data_layout = input->data_layout(); const int idx_width = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH); const int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT); pool_size_x = is_global_pooling ? input->dimension(idx_width) : pool_info.pool_size().width; pool_size_y = is_global_pooling ? input->dimension(idx_height) : pool_info.pool_size().height; // Validate pool info before calling scaled_dimensions ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_pool_info(pool_size_x, pool_size_y)); // Check output dimensions std::tie(pooled_w, pooled_h) = scaled_dimensions(input->dimension(idx_width), input->dimension(idx_height), pool_size_x, pool_size_y, pool_info.pad_stride_info()); ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, output, pool_info, pooled_w, pooled_h)); ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input->clone().get(), output->clone().get(), pool_info, num_elems_processed_per_iteration, border_size, pooled_w, pooled_h, pool_size_x, pool_size_y) .first); return Status{}; } void NEPoolingLayerKernel::run(const Window &window, const ThreadInfo &info) { ARM_COMPUTE_UNUSED(info); ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window); ARM_COMPUTE_ERROR_ON(_func == nullptr); const unsigned int pool_stride_x = _pool_info.pad_stride_info().stride().first; const unsigned int pool_stride_y = _pool_info.pad_stride_info().stride().second; const unsigned int pool_size = _pool_info.pool_size().width; const bool exclude_padding = _pool_info.exclude_padding(); Window window_input(window); if(_input->info()->data_layout() == DataLayout::NCHW) { // Set step for input in x and y direction for the input unsigned int window_x_inc = 0; switch(_input->info()->data_type()) { case DataType::QASYMM8: { window_x_inc = pool_stride_x; if((pool_size == 2 || pool_size == 3) && pool_stride_x < 3) { window_x_inc = (pool_stride_x == 2) ? _num_elems_processed_per_iteration * 2 : _num_elems_processed_per_iteration; } break; } case DataType::F16: case DataType::F32: { window_x_inc = pool_stride_x; break; } default: { ARM_COMPUTE_ERROR("Not supported"); } } window_input.set(Window::DimX, Window::Dimension(window.x().start() * pool_stride_x, window.x().end() * pool_stride_x, window_x_inc)); window_input.set(Window::DimY, Window::Dimension(window.y().start() * pool_stride_y, window.y().end() * pool_stride_y, pool_stride_y)); } else { window_input.set(Window::DimX, Window::Dimension(window.x().start(), window.x().end(), _num_elems_processed_per_iteration)); window_input.set(Window::DimY, Window::Dimension(0, _input->info()->dimension(1), pool_stride_x)); window_input.set(Window::DimZ, Window::Dimension(0, _input->info()->dimension(2), pool_stride_y)); } // Run function (this->*_func)(window_input, window, _pool_info.pool_type(), exclude_padding); }