/* * Copyright (c) 2016-2020 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "src/core/NEON/kernels/NEPixelWiseMultiplicationKernel.h" #include "arm_compute/core/TensorInfo.h" #include "src/core/CPP/Validate.h" #include "src/core/NEON/NEAsymm.h" #include "src/core/NEON/NESymm.h" #include "src/core/NEON/wrapper/wrapper.h" #include "src/core/helpers/AutoConfiguration.h" #include "src/core/helpers/WindowHelpers.h" #include #if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC #include // needed for float16_t #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */ namespace arm_compute { namespace { const float scale255_constant = 1.f / 255.f; const float32x4_t scale255_constant_f32q = vdupq_n_f32(scale255_constant); const float32x4_t positive_round_f32q = vdupq_n_f32(0.5f); inline Status validate_arguments(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, float scale, ConvertPolicy overflow_policy, RoundingPolicy rounding_policy) { ARM_COMPUTE_UNUSED(overflow_policy); ARM_COMPUTE_UNUSED(rounding_policy); ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input1); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input1, 1, DataType::U8, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::S16, DataType::S32, DataType::QSYMM16, DataType::F16, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input2, 1, DataType::U8, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::S16, DataType::S32, DataType::QSYMM16, DataType::F16, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::U8, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::S16, DataType::QSYMM16, DataType::S32, DataType::F16, DataType::F32); if(is_data_type_quantized(input1->data_type()) || is_data_type_quantized(input2->data_type())) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input1, input2); ARM_COMPUTE_RETURN_ERROR_ON_MSG(overflow_policy == ConvertPolicy::WRAP, "ConvertPolicy cannot be WRAP if datatype is quantized"); } if(output->total_size() > 0) { const TensorShape &out_shape = TensorShape::broadcast_shape(input1->tensor_shape(), input2->tensor_shape()); ARM_COMPUTE_RETURN_ERROR_ON_MSG(detail::have_different_dimensions(out_shape, output->tensor_shape(), 0), "Wrong shape for output"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(out_shape.total_size() == 0, "Inputs are not broadcast compatible"); // clang-format off ARM_COMPUTE_RETURN_ERROR_ON_MSG( !(input1->data_type() == input2->data_type() && input2->data_type() == output->data_type()) && !(input1->data_type() == DataType::U8 && input2->data_type() == DataType::U8 && output->data_type() == DataType::S16) && !(input1->data_type() == DataType::U8 && input2->data_type() == DataType::S16 && output->data_type() == DataType::S16) && !(input1->data_type() == DataType::S16 && input2->data_type() == DataType::U8 && output->data_type() == DataType::S16) && !(input1->data_type() == DataType::S16 && input2->data_type() == DataType::U8 && output->data_type() == DataType::S16) && !(input1->data_type() == DataType::QSYMM16 && input2->data_type() == DataType::QSYMM16 && output->data_type() == DataType::S32) , "Invalid data type combination"); // clang-format on ARM_COMPUTE_RETURN_ERROR_ON_MSG(input1->data_type() == DataType::S16 && output->data_type() == DataType::S32 && scale != 1.f, "Unsupported scale for QSYMM16 inputs and S32 output"); } if(std::abs(scale - scale255_constant) < 0.00001f) { ARM_COMPUTE_RETURN_ERROR_ON(rounding_policy != RoundingPolicy::TO_NEAREST_UP && rounding_policy != RoundingPolicy::TO_NEAREST_EVEN); ARM_COMPUTE_RETURN_ERROR_ON_MSG(input1->data_type() == DataType::S32 && input2->data_type() == DataType::S32 && output->data_type() == DataType::S32, "Scale == 1/255 is not supported if input and output are of data type S32"); } else { ARM_COMPUTE_RETURN_ERROR_ON(rounding_policy != RoundingPolicy::TO_ZERO); int exponent = 0; const float normalized_mantissa = std::frexp(scale, &exponent); // Use int scaling if factor is equal to 1/2^n for 0 <= n <= 15 // frexp returns 0.5 as mantissa which means that the exponent will be in the range of -1 <= e <= 14 // Moreover, it will be negative as we deal with 1/2^n ARM_COMPUTE_RETURN_ERROR_ON_MSG(!((normalized_mantissa == 0.5f) && (-14 <= exponent) && (exponent <= 1)), "Scale value not supported (Should be 1/(2^n) or 1/255"); } return Status{}; } /* Scales a given vector by 1/255. * * @note This does not work for all cases. e.g. for float of 0.49999999999999994 and large floats. * * @param in Input vector to scale. * @return Scaled output rounded to nearest (round half up). */ inline int32x4_t scale255_S32_S32(int32x4_t in) { // Scale const float32x4_t tmp = vmulq_f32(vcvtq_f32_s32(in), scale255_constant_f32q); // Round to nearest (round half up) // Add +0.5 for all values // Afterwards vcvt rounds toward zero return vcvtq_s32_f32(vaddq_f32(tmp, positive_round_f32q)); } inline uint16x8_t scale255_U16_U16(uint16x8_t in) { const int32x4_t tmp_s1 = scale255_S32_S32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(in)))); const int32x4_t tmp_s2 = scale255_S32_S32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(in)))); return vreinterpretq_u16_s16(vcombine_s16(vmovn_s32(tmp_s2), vmovn_s32(tmp_s1))); } template inline typename std::enable_if::value, int8x16_t>::type vquantize(float32x4x4_t val, const UniformQuantizationInfo &info) { return vquantize_signed(val, info); } template inline typename std::enable_if::value, uint8x16_t>::type vquantize(float32x4x4_t val, const UniformQuantizationInfo &info) { return vquantize(val, info); } template void mul_saturate_quantized_8(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window, float scale) { // Create input windows Window win = window; Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape()); Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape()); // Clear X Dimension on execution window as we handle manually win.set(Window::DimX, Window::Dimension(0, 1, 1)); const int window_step_x = 16 / sizeof(T); const auto window_start_x = static_cast(window.x().start()); const auto window_end_x = static_cast(window.x().end()); const bool is_broadcast_across_x = in1->info()->tensor_shape().x() != in2->info()->tensor_shape().x(); const UniformQuantizationInfo output_qua_info = out->info()->quantization_info().uniform(); const UniformQuantizationInfo tmp_qua_info = { output_qua_info.scale / scale, output_qua_info.offset }; if(is_broadcast_across_x) { const bool is_broadcast_input_2 = input2_win.x().step() == 0; Window broadcast_win = is_broadcast_input_2 ? input2_win : input1_win; Window non_broadcast_win = !is_broadcast_input_2 ? input2_win : input1_win; const ITensor *broadcast_tensor = is_broadcast_input_2 ? in2 : in1; const ITensor *non_broadcast_tensor = !is_broadcast_input_2 ? in2 : in1; const UniformQuantizationInfo broadcast_qinfo = broadcast_tensor->info()->quantization_info().uniform(); const UniformQuantizationInfo non_broadcast_qinfo = non_broadcast_tensor->info()->quantization_info().uniform(); // Clear X Dimension on execution window as we handle manually non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator broadcast_input(broadcast_tensor, broadcast_win); Iterator non_broadcast_input(non_broadcast_tensor, non_broadcast_win); Iterator output(out, win); using ExactTagType = typename wrapper::traits::neon_vector::tag_type; execute_window_loop(win, [&](const Coordinates &) { const auto non_broadcast_input_ptr = reinterpret_cast(non_broadcast_input.ptr()); const auto output_ptr = reinterpret_cast(output.ptr()); const auto broadcast_value = *reinterpret_cast(broadcast_input.ptr()); const auto broadcast_value_vec = wrapper::vdup_n(broadcast_value, ExactTagType{}); // Compute window_step_x elements per iteration int x = window_start_x; for(; x <= (window_end_x - window_step_x); x += window_step_x) { const auto non_broadcast_v = wrapper::vloadq(non_broadcast_input_ptr + x); // Dequantize inputs const float32x4x4_t in1_f32x4x4 = vdequantize(non_broadcast_v, non_broadcast_qinfo); const float32x4x4_t in2_f32x4x4 = vdequantize(broadcast_value_vec, broadcast_qinfo); const float32x4x4_t out_f32x4x4 = { vmulq_f32(in1_f32x4x4.val[0], in2_f32x4x4.val[0]), vmulq_f32(in1_f32x4x4.val[1], in2_f32x4x4.val[1]), vmulq_f32(in1_f32x4x4.val[2], in2_f32x4x4.val[2]), vmulq_f32(in1_f32x4x4.val[3], in2_f32x4x4.val[3]), }; // Quantize output const auto result = vquantize(out_f32x4x4, tmp_qua_info); wrapper::vstore(output_ptr + x, result); } // Compute left-over elements for(; x < window_end_x; ++x) { // Dequantize inputs const T in1 = *(non_broadcast_input_ptr + x); const float tmp_in1 = Qasymm8QuantizationHelper::dequantize(in1, non_broadcast_qinfo); const float tmp_in2 = Qasymm8QuantizationHelper::dequantize(broadcast_value, broadcast_qinfo); const float tmp_f = tmp_in1 * tmp_in2; // Quantize output const auto tmp_qua = Qasymm8QuantizationHelper::quantize(tmp_f, tmp_qua_info); *(output_ptr + x) = tmp_qua; } }, broadcast_input, non_broadcast_input, output); } else { const UniformQuantizationInfo input1_qua_info = in1->info()->quantization_info().uniform(); const UniformQuantizationInfo input2_qua_info = in2->info()->quantization_info().uniform(); // Clear X Dimension on execution window as we handle manually input1_win.set(Window::DimX, Window::Dimension(0, 1, 1)); input2_win.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator input1(in1, input1_win); Iterator input2(in2, input2_win); Iterator output(out, win); execute_window_loop(win, [&](const Coordinates &) { const auto input1_ptr = reinterpret_cast(input1.ptr()); const auto input2_ptr = reinterpret_cast(input2.ptr()); const auto output_ptr = reinterpret_cast(output.ptr()); // Compute window_step_x elements per iteration int x = window_start_x; for(; x <= (window_end_x - window_step_x); x += window_step_x) { const auto input1_q = wrapper::vloadq(input1_ptr + x); const auto input2_q = wrapper::vloadq(input2_ptr + x); // Dequantize inputs const float32x4x4_t in1_f32x4x4 = vdequantize(input1_q, input1_qua_info); const float32x4x4_t in2_f32x4x4 = vdequantize(input2_q, input2_qua_info); const float32x4x4_t out_f32x4x4 = { vmulq_f32(in1_f32x4x4.val[0], in2_f32x4x4.val[0]), vmulq_f32(in1_f32x4x4.val[1], in2_f32x4x4.val[1]), vmulq_f32(in1_f32x4x4.val[2], in2_f32x4x4.val[2]), vmulq_f32(in1_f32x4x4.val[3], in2_f32x4x4.val[3]), }; // Quantize output const auto result = vquantize(out_f32x4x4, tmp_qua_info); wrapper::vstore(output_ptr + x, result); } // Compute left-over elements for(; x < window_end_x; ++x) { // Dequantize inputs const T in1 = *(input1_ptr + x); const T in2 = *(input2_ptr + x); const float tmp_in1 = Qasymm8QuantizationHelper::dequantize(in1, input1_qua_info); const float tmp_in2 = Qasymm8QuantizationHelper::dequantize(in2, input2_qua_info); const float tmp_f = tmp_in1 * tmp_in2; // Quantize output const auto tmp_qua = Qasymm8QuantizationHelper::quantize(tmp_f, tmp_qua_info); *(output_ptr + x) = tmp_qua; } }, input1, input2, output); } } void mul_saturate_QSYMM16_QSYMM16_QSYMM16(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window, float scale) { const UniformQuantizationInfo input1_qua_info = in1->info()->quantization_info().uniform(); const UniformQuantizationInfo input2_qua_info = in2->info()->quantization_info().uniform(); const UniformQuantizationInfo output_qua_info = out->info()->quantization_info().uniform(); // Create input windows Window win = window; Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape()); Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape()); // Clear X Dimension on execution window as we handle manually win.set(Window::DimX, Window::Dimension(0, 1, 1)); input1_win.set(Window::DimX, Window::Dimension(0, 1, 1)); input2_win.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator input1(in1, input1_win); Iterator input2(in2, input2_win); Iterator output(out, win); const int window_step_x = 16; const auto window_start_x = static_cast(window.x().start()); const auto window_end_x = static_cast(window.x().end()); const UniformQuantizationInfo tmp_qua_info = { output_qua_info.scale / scale, output_qua_info.offset }; execute_window_loop(win, [&](const Coordinates &) { const auto input1_ptr = reinterpret_cast(input1.ptr()); const auto input2_ptr = reinterpret_cast(input2.ptr()); const auto output_ptr = reinterpret_cast(output.ptr()); // Compute window_step_x elements per iteration int x = window_start_x; for(; x <= (window_end_x - window_step_x); x += window_step_x) { const qsymm16x8x2_t input1_q = { { vld1q_s16(input1_ptr + x), vld1q_s16(input1_ptr + x + 8), } }; const qsymm16x8x2_t input2_q = { { vld1q_s16(input2_ptr + x), vld1q_s16(input2_ptr + x + 8), } }; // Dequantize inputs const float32x4x4_t in1_f32x4x4 = vdequantize(input1_q, input1_qua_info); const float32x4x4_t in2_f32x4x4 = vdequantize(input2_q, input2_qua_info); const float32x4x4_t out_f32x4x4 = { vmulq_f32(in1_f32x4x4.val[0], in2_f32x4x4.val[0]), vmulq_f32(in1_f32x4x4.val[1], in2_f32x4x4.val[1]), vmulq_f32(in1_f32x4x4.val[2], in2_f32x4x4.val[2]), vmulq_f32(in1_f32x4x4.val[3], in2_f32x4x4.val[3]), }; const qsymm16x8x2_t result = vquantize_qsymm16(out_f32x4x4, tmp_qua_info); vst1q_s16(output_ptr + x, result.val[0]); vst1q_s16(output_ptr + x + 8, result.val[1]); } // Compute left-over elements for(; x < window_end_x; ++x) { // Dequantize inputs float tmp_in1 = static_cast(*(input1_ptr + x)) * input1_qua_info.scale; float tmp_in2 = static_cast(*(input2_ptr + x)) * input2_qua_info.scale; float tmp_f = tmp_in1 * tmp_in2; // Quantize output, lrintf() has same rounding mode as vcombine_s16 int32_t tmp = lrintf(tmp_f / tmp_qua_info.scale); qsymm16_t tmp_qua = static_cast(tmp > SHRT_MAX) ? SHRT_MAX : ((tmp < SHRT_MIN) ? SHRT_MIN : tmp); *(output_ptr + x) = tmp_qua; } }, input1, input2, output); } void mul_QSYMM16_QSYMM16_S32(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window, int scale) { ARM_COMPUTE_UNUSED(scale); // Create input windows Window win = window; Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape()); Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape()); // Clear X Dimension on execution window as we handle manually win.set(Window::DimX, Window::Dimension(0, 1, 1)); input1_win.set(Window::DimX, Window::Dimension(0, 1, 1)); input2_win.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator input1(in1, input1_win); Iterator input2(in2, input2_win); Iterator output(out, win); const int window_step_x = 16; const auto window_start_x = static_cast(window.x().start()); const auto window_end_x = static_cast(window.x().end()); execute_window_loop(win, [&](const Coordinates &) { const auto input1_ptr = reinterpret_cast(input1.ptr()); const auto input2_ptr = reinterpret_cast(input2.ptr()); const auto output_ptr = reinterpret_cast(output.ptr()); // Compute window_step_x elements per iteration int x = window_start_x; for(; x <= (window_end_x - window_step_x); x += window_step_x) { const qsymm16x8x2_t input1_q = { { vld1q_s16(input1_ptr + x), vld1q_s16(input1_ptr + x + 8), } }; const qsymm16x8x2_t input2_q = { { vld1q_s16(input2_ptr + x), vld1q_s16(input2_ptr + x + 8), } }; const int32x4x4_t in1_s32 = { { vmovl_s16(vget_low_s16(input1_q.val[0])), vmovl_s16(vget_high_s16(input1_q.val[0])), vmovl_s16(vget_low_s16(input1_q.val[1])), vmovl_s16(vget_high_s16(input1_q.val[1])), } }; const int32x4x4_t in2_s32 = { { vmovl_s16(vget_low_s16(input2_q.val[0])), vmovl_s16(vget_high_s16(input2_q.val[0])), vmovl_s16(vget_low_s16(input2_q.val[1])), vmovl_s16(vget_high_s16(input2_q.val[1])), } }; const int32x4x4_t result = { { vmulq_s32(in1_s32.val[0], in2_s32.val[0]), vmulq_s32(in1_s32.val[1], in2_s32.val[1]), vmulq_s32(in1_s32.val[2], in2_s32.val[2]), vmulq_s32(in1_s32.val[3], in2_s32.val[3]), } }; vst1q_s32(output_ptr + x, result.val[0]); vst1q_s32(output_ptr + x + 4, result.val[1]); vst1q_s32(output_ptr + x + 8, result.val[2]); vst1q_s32(output_ptr + x + 12, result.val[3]); } // Compute left-over elements for(; x < window_end_x; ++x) { int32_t tmp = static_cast(*(input1_ptr + x)) * static_cast(*(input2_ptr + x)); *(output_ptr + x) = tmp; } }, input1, input2, output); } template void mul_U8_U8_U8(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window, int n) { // Create input windows Window win = window; Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape()); Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape()); // Clear X Dimension on execution window as we handle manually win.set(Window::DimX, Window::Dimension(0, 1, 1)); input1_win.set(Window::DimX, Window::Dimension(0, 1, 1)); input2_win.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator input1(in1, input1_win); Iterator input2(in2, input2_win); Iterator output(out, win); const int window_step_x = 16 / sizeof(uint8_t); const auto window_start_x = static_cast(window.x().start()); const auto window_end_x = static_cast(window.x().end()); execute_window_loop(win, [&](const Coordinates &) { const auto input1_ptr = reinterpret_cast(input1.ptr()); const auto input2_ptr = reinterpret_cast(input2.ptr()); const auto output_ptr = reinterpret_cast(output.ptr()); // Compute window_step_x elements per iteration int x = window_start_x; for(; x <= (window_end_x - window_step_x); x += window_step_x) { const uint8x16_t ta1 = wrapper::vloadq(input1_ptr + x); const uint8x16_t ta2 = wrapper::vloadq(input2_ptr + x); uint16x8_t tmp1_high = vmovl_u8(vget_high_u8(ta1)); const uint16x8_t tmp2_high = vmovl_u8(vget_high_u8(ta2)); uint16x8_t tmp1_low = vmovl_u8(vget_low_u8(ta1)); const uint16x8_t tmp2_low = vmovl_u8(vget_low_u8(ta2)); tmp1_high = vmulq_u16(tmp1_high, tmp2_high); tmp1_low = vmulq_u16(tmp1_low, tmp2_low); if(is_scale255) { tmp1_high = scale255_U16_U16(tmp1_high); tmp1_low = scale255_U16_U16(tmp1_low); } else { const int16x8_t vn = vdupq_n_s16(-n); if(is_sat) { tmp1_high = vqshlq_u16(tmp1_high, vn); tmp1_low = vqshlq_u16(tmp1_low, vn); } else { tmp1_high = vshlq_u16(tmp1_high, vn); tmp1_low = vshlq_u16(tmp1_low, vn); } } if(is_sat) { vst1q_u8(output_ptr, vcombine_u8(vqmovn_u16(tmp1_low), vqmovn_u16(tmp1_high))); } else { vst1q_u8(output_ptr, vcombine_u8(vmovn_u16(tmp1_low), vmovn_u16(tmp1_high))); } } // Compute left-over elements for(; x < window_end_x; ++x) { uint16_t tmp = static_cast(*(input1_ptr + x)) * static_cast(*(input2_ptr + x)); if(is_scale255) { float tmp_f = static_cast(tmp) * scale255_constant; tmp = static_cast(tmp_f + 0.5f); } else { tmp >>= n; } if(is_sat && tmp > 255) { tmp = 255; } *(output_ptr + x) = static_cast(tmp); } }, input1, input2, output); } template inline int16x8_t mul_S16_S16_S16_n_loop(const int16x8_t &input1, const int16x8_t &input2, int n) { int32x4_t tmp1_high = vmovl_s16(vget_high_s16(input1)); const int32x4_t tmp2_high = vmovl_s16(vget_high_s16(input2)); int32x4_t tmp1_low = vmovl_s16(vget_low_s16(input1)); const int32x4_t tmp2_low = vmovl_s16(vget_low_s16(input2)); tmp1_high = vmulq_s32(tmp1_high, tmp2_high); tmp1_low = vmulq_s32(tmp1_low, tmp2_low); if(is_scale255) { tmp1_high = scale255_S32_S32(tmp1_high); tmp1_low = scale255_S32_S32(tmp1_low); } else { // Right shift amount const int32x4_t vn = vdupq_n_s32(-n); // Left shift amount const int32x4_t vnl = vdupq_n_s32(n); // Calculate conversion bit const uint32x4_t tmp1_high_u = vreinterpretq_u32_s32(tmp1_high); const uint32x4_t tmp1_low_u = vreinterpretq_u32_s32(tmp1_low); const uint32x4_t sign_high = vshrq_n_u32(tmp1_high_u, 31); const uint32x4_t sign_low = vshrq_n_u32(tmp1_low_u, 31); const int32x4_t sign_high_s = vreinterpretq_s32_u32(sign_high); const int32x4_t sign_low_s = vreinterpretq_s32_u32(sign_low); const int32x4_t convert_high = vsubq_s32(vshlq_s32(sign_high_s, vnl), sign_high_s); const int32x4_t convert_low = vsubq_s32(vshlq_s32(sign_low_s, vnl), sign_low_s); if(is_sat) { tmp1_high = vqshlq_s32(vaddq_s32(tmp1_high, convert_high), vn); tmp1_low = vqshlq_s32(vaddq_s32(tmp1_low, convert_low), vn); } else { tmp1_high = vshlq_s32(vaddq_s32(tmp1_high, convert_high), vn); tmp1_low = vshlq_s32(vaddq_s32(tmp1_low, convert_low), vn); } } if(is_sat) { return vcombine_s16(vqmovn_s32(tmp1_low), vqmovn_s32(tmp1_high)); } else { return vcombine_s16(vmovn_s32(tmp1_low), vmovn_s32(tmp1_high)); } } template inline int16x8x2_t mul_S16_S16_S16_n_k(const int16x8x2_t &input1, const int16x8x2_t &input2, int n) { const int16x8x2_t result = { { // First 8 elements mul_S16_S16_S16_n_loop(input1.val[0], input2.val[0], n), // Second 8 elements mul_S16_S16_S16_n_loop(input1.val[1], input2.val[1], n) } }; return result; } template void mul_S16_S16_S16(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window, int n) { // Create input windows Window win = window; Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape()); Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape()); // Clear X Dimension on execution window as we handle manually win.set(Window::DimX, Window::Dimension(0, 1, 1)); input1_win.set(Window::DimX, Window::Dimension(0, 1, 1)); input2_win.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator input1(in1, input1_win); Iterator input2(in2, input2_win); Iterator output(out, win); const int window_step_x = 16; const auto window_start_x = static_cast(window.x().start()); const auto window_end_x = static_cast(window.x().end()); execute_window_loop(win, [&](const Coordinates &) { const auto input1_ptr = reinterpret_cast(input1.ptr()); const auto input2_ptr = reinterpret_cast(input2.ptr()); const auto output_ptr = reinterpret_cast(output.ptr()); // Compute window_step_x elements per iteration int x = window_start_x; for(; x <= (window_end_x - window_step_x); x += window_step_x) { const int16x8x2_t ta1 = { { vld1q_s16(input1_ptr + x), vld1q_s16(input1_ptr + x + 8), } }; const int16x8x2_t ta2 = { { vld1q_s16(input2_ptr + x), vld1q_s16(input2_ptr + x + 8), } }; const int16x8x2_t result = mul_S16_S16_S16_n_k(ta1, ta2, n); vst1q_s16(output_ptr + x, result.val[0]); vst1q_s16(output_ptr + x + 8, result.val[1]); } // Compute left-over elements for(; x < window_end_x; ++x) { int32_t tmp = static_cast(*(input1_ptr + x)) * static_cast(*(input2_ptr + x)); if(is_scale255) { float tmp_f = static_cast(tmp) * scale255_constant; tmp = static_cast(tmp_f + 0.5f); } else { if(tmp >= 0) { tmp >>= n; } else { uint32_t mask = (1u << n) - 1; tmp = (tmp + static_cast(mask)) >> n; } } if(is_sat) { tmp = (tmp > SHRT_MAX) ? SHRT_MAX : ((tmp < SHRT_MIN) ? SHRT_MIN : tmp); } *(output_ptr + x) = static_cast(tmp); } }, input1, input2, output); } template inline int32x4_t mul_S32_S32_S32_n_loop(const int32x4_t &input1, const int32x4_t &input2, int n) { const int32x2_t input1_1 = vget_low_s32(input1); const int32x2_t input2_1 = vget_low_s32(input2); const int32x2_t input1_2 = vget_high_s32(input1); const int32x2_t input2_2 = vget_high_s32(input2); int64x2_t tmp_1 = vmull_s32(input1_1, input2_1); int64x2_t tmp_2 = vmull_s32(input1_2, input2_2); // Apply scaling, conversion and rounding (round to zero) // Right shift amount const int64x2_t vn = vdupq_n_s64(-n); // Left shift amount const int64x2_t vnl = vdupq_n_s64(n); // Calculate conversion bit const uint64x2_t tmp_1_u = vreinterpretq_u64_s64(tmp_1); const uint64x2_t sign_1 = vshrq_n_u64(tmp_1_u, 63); const int64x2_t sign_1_s = vreinterpretq_s64_u64(sign_1); const int64x2_t convert_1 = vsubq_s64(vshlq_s64(sign_1_s, vnl), sign_1_s); const uint64x2_t tmp_2_u = vreinterpretq_u64_s64(tmp_2); const uint64x2_t sign_2 = vshrq_n_u64(tmp_2_u, 63); const int64x2_t sign_2_s = vreinterpretq_s64_u64(sign_2); const int64x2_t convert_2 = vsubq_s64(vshlq_s64(sign_2_s, vnl), sign_2_s); if(is_sat) { tmp_1 = vqshlq_s64(vaddq_s64(tmp_1, convert_1), vn); tmp_2 = vqshlq_s64(vaddq_s64(tmp_2, convert_2), vn); return vcombine_s32(vqmovn_s64(tmp_1), vqmovn_s64(tmp_2)); } else { tmp_1 = vshlq_s64(vaddq_s64(tmp_1, convert_1), vn); tmp_2 = vshlq_s64(vaddq_s64(tmp_2, convert_2), vn); return vcombine_s32(vmovn_s64(tmp_1), vmovn_s64(tmp_2)); } } template inline int32x4x2_t mul_S32_S32_S32_n_k(const int32x4x2_t &input1, const int32x4x2_t &input2, int n) { const int32x4x2_t result = { { // First 4 elements mul_S32_S32_S32_n_loop(input1.val[0], input2.val[0], n), // Second 4 elements mul_S32_S32_S32_n_loop(input1.val[1], input2.val[1], n) } }; return result; } template void mul_S32_S32_S32(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window, int n) { // Create input windows Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape()); Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape()); // Clear X Dimension on execution window as we handle manually Window win = window; win.set(Window::DimX, Window::Dimension(0, 1, 1)); const int window_step_x = 8; const auto window_start_x = static_cast(window.x().start()); const auto window_end_x = static_cast(window.x().end()); const bool is_broadcast_across_x = in1->info()->tensor_shape().x() != in2->info()->tensor_shape().x(); if(is_broadcast_across_x) { const bool is_broadcast_input_2 = input2_win.x().step() == 0; Window broadcast_win = is_broadcast_input_2 ? input2_win : input1_win; Window non_broadcast_win = !is_broadcast_input_2 ? input2_win : input1_win; const ITensor *broadcast_tensor = is_broadcast_input_2 ? in2 : in1; const ITensor *non_broadcast_tensor = !is_broadcast_input_2 ? in2 : in1; // Clear X Dimension on execution window as we handle manually non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator broadcast_input(broadcast_tensor, broadcast_win); Iterator non_broadcast_input(non_broadcast_tensor, non_broadcast_win); Iterator output(out, win); execute_window_loop(win, [&](const Coordinates &) { const auto non_broadcast_input_ptr = reinterpret_cast(non_broadcast_input.ptr()); const auto output_ptr = reinterpret_cast(output.ptr()); const int32_t broadcast_value = *reinterpret_cast(broadcast_input.ptr()); const auto broadcast_value_vec = vdupq_n_s32(broadcast_value); // Compute window_step_x elements per iteration int x = window_start_x; for(; x <= (window_end_x - window_step_x); x += window_step_x) { const int32x4x2_t broadcast_v = { { broadcast_value_vec, broadcast_value_vec, } }; const int32x4x2_t non_broadcast_v = { { vld1q_s32(non_broadcast_input_ptr + x), vld1q_s32(non_broadcast_input_ptr + x + 4), } }; const int32x4x2_t result = mul_S32_S32_S32_n_k(broadcast_v, non_broadcast_v, n); vst1q_s32(output_ptr + x, result.val[0]); vst1q_s32(output_ptr + x + 4, result.val[1]); } // Compute left-over elements for(; x < window_end_x; ++x) { int64_t tmp = static_cast(broadcast_value) * static_cast(*(non_broadcast_input_ptr + x)); if(tmp >= 0) { tmp >>= n; } else { uint64_t mask = (1u << n) - 1; tmp = (tmp + static_cast(mask)) >> n; } if(is_sat) { tmp = utility::clamp(tmp); } *(output_ptr + x) = static_cast(tmp); } }, broadcast_input, non_broadcast_input, output); } else { // Clear X Dimension on execution window as we handle manually input1_win.set(Window::DimX, Window::Dimension(0, 1, 1)); input2_win.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator input1(in1, input1_win); Iterator input2(in2, input2_win); Iterator output(out, win); execute_window_loop(win, [&](const Coordinates &) { const auto input1_ptr = reinterpret_cast(input1.ptr()); const auto input2_ptr = reinterpret_cast(input2.ptr()); const auto output_ptr = reinterpret_cast(output.ptr()); // Compute window_step_x elements per iteration int x = window_start_x; for(; x <= (window_end_x - window_step_x); x += window_step_x) { const int32x4x2_t ta1 = { { vld1q_s32(input1_ptr + x), vld1q_s32(input1_ptr + x + 4), } }; const int32x4x2_t ta2 = { { vld1q_s32(input2_ptr + x), vld1q_s32(input2_ptr + x + 4), } }; const int32x4x2_t result = mul_S32_S32_S32_n_k(ta1, ta2, n); vst1q_s32(output_ptr + x, result.val[0]); vst1q_s32(output_ptr + x + 4, result.val[1]); } // Compute left-over elements for(; x < window_end_x; ++x) { int64_t tmp = static_cast(*(input1_ptr + x)) * static_cast(*(input2_ptr + x)); if(tmp >= 0) { tmp >>= n; } else { uint64_t mask = (1u << n) - 1; tmp = (tmp + static_cast(mask)) >> n; } if(is_sat) { tmp = utility::clamp(tmp); } *(output_ptr + x) = static_cast(tmp); } }, input1, input2, output); } } void mul_F32_F32_F32(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window, float scale) { // Create input windows Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape()); Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape()); // Clear X Dimension on execution window as we handle manually Window win = window; win.set(Window::DimX, Window::Dimension(0, 1, 1)); constexpr int window_step_x = 16 / sizeof(float); const auto window_start_x = static_cast(window.x().start()); const auto window_end_x = static_cast(window.x().end()); const bool is_broadcast_across_x = in1->info()->tensor_shape().x() != in2->info()->tensor_shape().x(); using ExactTagType = typename wrapper::traits::neon_vector::tag_type; if(is_broadcast_across_x) { const bool is_broadcast_input_2 = input2_win.x().step() == 0; Window broadcast_win = is_broadcast_input_2 ? input2_win : input1_win; Window non_broadcast_win = !is_broadcast_input_2 ? input2_win : input1_win; const ITensor *broadcast_tensor = is_broadcast_input_2 ? in2 : in1; const ITensor *non_broadcast_tensor = !is_broadcast_input_2 ? in2 : in1; // Clear X Dimension on execution window as we handle manually non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator broadcast_input(broadcast_tensor, broadcast_win); Iterator non_broadcast_input(non_broadcast_tensor, non_broadcast_win); Iterator output(out, win); execute_window_loop(win, [&](const Coordinates &) { const auto non_broadcast_input_ptr = reinterpret_cast(non_broadcast_input.ptr()); const auto output_ptr = reinterpret_cast(output.ptr()); const float broadcast_value = *reinterpret_cast(broadcast_input.ptr()); const auto broadcast_value_vec = wrapper::vdup_n(broadcast_value, ExactTagType{}); const auto scale_vec = wrapper::vdup_n(scale, ExactTagType{}); // Compute window_step_x elements per iteration int x = window_start_x; for(; x <= (window_end_x - window_step_x); x += window_step_x) { const auto non_broadcast_v = wrapper::vloadq(non_broadcast_input_ptr + x); auto res = wrapper::vmul(wrapper::vmul(broadcast_value_vec, non_broadcast_v), scale_vec); wrapper::vstore(output_ptr + x, res); } // Compute left-over elements for(; x < window_end_x; ++x) { const auto non_broadcast_v = *(non_broadcast_input_ptr + x); *(output_ptr + x) = broadcast_value * non_broadcast_v * scale; } }, broadcast_input, non_broadcast_input, output); } else { // Clear X Dimension on execution window as we handle manually input1_win.set(Window::DimX, Window::Dimension(0, 1, 1)); input2_win.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator input1(in1, input1_win); Iterator input2(in2, input2_win); Iterator output(out, win); execute_window_loop(win, [&](const Coordinates &) { const auto input1_ptr = reinterpret_cast(input1.ptr()); const auto input2_ptr = reinterpret_cast(input2.ptr()); const auto output_ptr = reinterpret_cast(output.ptr()); // Compute window_step_x elements per iteration int x = window_start_x; for(; x <= (window_end_x - window_step_x); x += window_step_x) { const auto ta1 = wrapper::vloadq(input1_ptr + x); const auto ta2 = wrapper::vloadq(input2_ptr + x); const auto scale_vec = wrapper::vdup_n(scale, ExactTagType{}); const auto res = wrapper::vmul(wrapper::vmul(ta1, ta2), scale_vec); wrapper::vstore(output_ptr + x, res); } // Compute left-over elements for(; x < window_end_x; ++x) { const auto ta1 = *(input1_ptr + x); const auto ta2 = *(input2_ptr + x); *(output_ptr + x) = ta1 * ta2 * scale; } }, input1, input2, output); } } void c_mul_F32_F32_F32_n(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window) { // Create input windows Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape()); Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape()); // Clear X Dimension on execution window as we handle manually Window win = window; win.set(Window::DimX, Window::Dimension(0, 1, 1)); constexpr int window_step_x = 8 / sizeof(float); const auto window_start_x = static_cast(window.x().start()); const auto window_end_x = static_cast(window.x().end()); const bool is_broadcast_across_x = in1->info()->tensor_shape().x() != in2->info()->tensor_shape().x(); using ExactTagType = typename wrapper::traits::neon_vector::tag_type; if(is_broadcast_across_x) { const bool is_broadcast_input_2 = input2_win.x().step() == 0; Window broadcast_win = is_broadcast_input_2 ? input2_win : input1_win; Window non_broadcast_win = !is_broadcast_input_2 ? input2_win : input1_win; const ITensor *broadcast_tensor = is_broadcast_input_2 ? in2 : in1; const ITensor *non_broadcast_tensor = !is_broadcast_input_2 ? in2 : in1; // Clear X Dimension on execution window as we handle manually non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator broadcast_input(broadcast_tensor, broadcast_win); Iterator non_broadcast_input(non_broadcast_tensor, non_broadcast_win); Iterator output(out, win); execute_window_loop(win, [&](const Coordinates &) { const auto non_broadcast_input_ptr = reinterpret_cast(non_broadcast_input.ptr()); const auto output_ptr = reinterpret_cast(output.ptr()); const float broadcast_value = *reinterpret_cast(broadcast_input.ptr()); // Compute window_step_x elements per iteration int x = window_start_x; for(; x <= (window_end_x - window_step_x); x += window_step_x) { const auto a = wrapper::vloadq(non_broadcast_input_ptr + 2 * x); float32x4_t b = vdupq_n_f32(broadcast_value); const float32x4_t mask = { -1.0f, 1.0f, -1.0f, 1.0f }; const float32x2_t tmp00 = wrapper::vdup_n(wrapper::vgetlane(a, 0), ExactTagType{}); const float32x2_t tmp01 = wrapper::vdup_n(wrapper::vgetlane(a, 1), ExactTagType{}); const float32x2_t tmp10 = wrapper::vdup_n(wrapper::vgetlane(a, 2), ExactTagType{}); const float32x2_t tmp11 = wrapper::vdup_n(wrapper::vgetlane(a, 3), ExactTagType{}); const float32x4_t tmp0 = wrapper::vcombine(tmp00, tmp10); const float32x4_t tmp1 = wrapper::vcombine(tmp01, tmp11); float32x4_t res = wrapper::vmul(tmp0, b); b = wrapper::vmul(b, mask); res = wrapper::vmla(res, tmp1, b); wrapper::vstore(output_ptr + 2 * x, res); } // Compute left-over elements for(; x < window_end_x; ++x) { const auto non_broadcast_value0 = *(non_broadcast_input_ptr + 2 * x); const auto non_broadcast_value1 = *(non_broadcast_input_ptr + 2 * x + 1); auto res1 = broadcast_value * (non_broadcast_value0 - non_broadcast_value1); auto res2 = broadcast_value * (non_broadcast_value1 + non_broadcast_value0); *(output_ptr + 2 * x) = res1; *(output_ptr + 2 * x + 1) = res2; } }, broadcast_input, non_broadcast_input, output); } else { // Clear X Dimension on execution window as we handle manually input1_win.set(Window::DimX, Window::Dimension(0, 1, 1)); input2_win.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator input1(in1, input1_win); Iterator input2(in2, input2_win); Iterator output(out, win); execute_window_loop(win, [&](const Coordinates &) { const auto input1_ptr = reinterpret_cast(input1.ptr()); const auto input2_ptr = reinterpret_cast(input2.ptr()); const auto output_ptr = reinterpret_cast(output.ptr()); // Compute window_step_x elements per iteration int x = window_start_x; for(; x <= (window_end_x - window_step_x); x += window_step_x) { const float32x4_t a = wrapper::vloadq(input1_ptr + 2 * x); float32x4_t b = wrapper::vloadq(input2_ptr + 2 * x); const float32x4_t mask = { -1.0f, 1.0f, -1.0f, 1.0f }; const float32x2_t tmp00 = wrapper::vdup_n(wrapper::vgetlane(a, 0), ExactTagType{}); const float32x2_t tmp01 = wrapper::vdup_n(wrapper::vgetlane(a, 1), ExactTagType{}); const float32x2_t tmp10 = wrapper::vdup_n(wrapper::vgetlane(a, 2), ExactTagType{}); const float32x2_t tmp11 = wrapper::vdup_n(wrapper::vgetlane(a, 3), ExactTagType{}); const float32x4_t tmp0 = wrapper::vcombine(tmp00, tmp10); const float32x4_t tmp1 = wrapper::vcombine(tmp01, tmp11); float32x4_t res = wrapper::vmul(tmp0, b); b = wrapper::vrev64(b); b = wrapper::vmul(b, mask); res = wrapper::vmla(res, tmp1, b); wrapper::vstore(output_ptr + 2 * x, res); } // Compute left-over elements for(; x < window_end_x; ++x) { const auto a0 = *(input1_ptr + 2 * x); const auto a1 = *(input1_ptr + 2 * x + 1); const auto b0 = *(input2_ptr + 2 * x); const auto b1 = *(input2_ptr + 2 * x + 1); auto res1 = a0 * b0 - a1 * b1; auto res2 = a0 * b1 + a1 * b0; *(output_ptr + 2 * x) = res1; *(output_ptr + 2 * x + 1) = res2; } }, input1, input2, output); } } #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC void mul_F16_F16_F16(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window, float scale) { // Create input windows Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape()); Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape()); // Clear X Dimension on execution window as we handle manually Window win = window; win.set(Window::DimX, Window::Dimension(0, 1, 1)); constexpr int window_step_x = 16; const auto window_start_x = static_cast(window.x().start()); const auto window_end_x = static_cast(window.x().end()); const bool is_broadcast_across_x = in1->info()->tensor_shape().x() != in2->info()->tensor_shape().x(); if(is_broadcast_across_x) { const bool is_broadcast_input_2 = input2_win.x().step() == 0; Window broadcast_win = is_broadcast_input_2 ? input2_win : input1_win; Window non_broadcast_win = !is_broadcast_input_2 ? input2_win : input1_win; const ITensor *broadcast_tensor = is_broadcast_input_2 ? in2 : in1; const ITensor *non_broadcast_tensor = !is_broadcast_input_2 ? in2 : in1; // Clear X Dimension on execution window as we handle manually non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator broadcast_input(broadcast_tensor, broadcast_win); Iterator non_broadcast_input(non_broadcast_tensor, non_broadcast_win); Iterator output(out, win); execute_window_loop(win, [&](const Coordinates &) { const auto non_broadcast_input_ptr = reinterpret_cast(non_broadcast_input.ptr()); const auto output_ptr = reinterpret_cast(output.ptr()); const auto broadcast_value = *reinterpret_cast(broadcast_input.ptr()); const float16x8x2_t broadcast_value_vec = { { vdupq_n_f16(broadcast_value), vdupq_n_f16(broadcast_value), } }; const auto scale_vec = vdupq_n_f16(scale); // Compute window_step_x elements per iteration int x = window_start_x; for(; x <= (window_end_x - window_step_x); x += window_step_x) { const float16x8x2_t non_broadcast_v = { { vld1q_f16(non_broadcast_input_ptr + x), vld1q_f16(non_broadcast_input_ptr + x + 8), } }; const float16x8x2_t result = { { vmulq_f16(vmulq_f16(broadcast_value_vec.val[0], non_broadcast_v.val[0]), scale_vec), vmulq_f16(vmulq_f16(broadcast_value_vec.val[1], non_broadcast_v.val[1]), scale_vec), } }; vst1q_f16(output_ptr + x, result.val[0]); vst1q_f16(output_ptr + x + 8, result.val[1]); } // Compute left-over elements for(; x < window_end_x; ++x) { const auto non_broadcast_v = *(non_broadcast_input_ptr + x); *(output_ptr + x) = broadcast_value * non_broadcast_v * scale; } }, broadcast_input, non_broadcast_input, output); } else { input1_win.set(Window::DimX, Window::Dimension(0, 1, 1)); input2_win.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator input1(in1, input1_win); Iterator input2(in2, input2_win); Iterator output(out, win); execute_window_loop(win, [&](const Coordinates &) { const auto input1_ptr = reinterpret_cast(input1.ptr()); const auto input2_ptr = reinterpret_cast(input2.ptr()); const auto output_ptr = reinterpret_cast(output.ptr()); // Compute window_step_x elements per iteration int x = window_start_x; for(; x <= (window_end_x - window_step_x); x += window_step_x) { const float16x8x2_t ta1 = { { vld1q_f16(input1_ptr + x), vld1q_f16(input1_ptr + x + 8), } }; const float16x8x2_t ta2 = { { vld1q_f16(input2_ptr + x), vld1q_f16(input2_ptr + x + 8), } }; const float16x8_t scale_vec = vdupq_n_f16(scale); const float16x8x2_t result = { { vmulq_f16(vmulq_f16(ta1.val[0], ta2.val[0]), scale_vec), vmulq_f16(vmulq_f16(ta1.val[1], ta2.val[1]), scale_vec), } }; vst1q_f16(output_ptr + x, result.val[0]); vst1q_f16(output_ptr + x + 8, result.val[1]); } // Compute left-over elements for(; x < window_end_x; ++x) { const auto ta1 = *(input1_ptr + x); const auto ta2 = *(input2_ptr + x); *(output_ptr + x) = ta1 * ta2 * scale; } }, input1, input2, output); } } #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */ template void mul_U8_U8_S16(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window, int n) { // Create input windows Window win = window; Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape()); Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape()); // Clear X Dimension on execution window as we handle manually win.set(Window::DimX, Window::Dimension(0, 1, 1)); input1_win.set(Window::DimX, Window::Dimension(0, 1, 1)); input2_win.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator input1(in1, input1_win); Iterator input2(in2, input2_win); Iterator output(out, win); const int window_step_x = 16 / sizeof(uint8_t); const auto window_start_x = static_cast(window.x().start()); const auto window_end_x = static_cast(window.x().end()); execute_window_loop(win, [&](const Coordinates &) { const auto input1_ptr = reinterpret_cast(input1.ptr()); const auto input2_ptr = reinterpret_cast(input2.ptr()); const auto output_ptr = reinterpret_cast(output.ptr()); // Compute window_step_x elements per iteration int x = window_start_x; for(; x <= (window_end_x - window_step_x); x += window_step_x) { const uint8x16_t bv = wrapper::vloadq(input2_ptr + x); const uint8x16_t av = wrapper::vloadq(input1_ptr + x); uint16x8_t tmp_low = vmovl_u8(vget_low_u8(av)); uint16x8_t tmp_high = vmovl_u8(vget_high_u8(av)); tmp_low = vmulq_u16(tmp_low, vmovl_u8(vget_low_u8(bv))); tmp_high = vmulq_u16(tmp_high, vmovl_u8(vget_high_u8(bv))); if(is_scale255) { tmp_low = scale255_U16_U16(tmp_low); tmp_high = scale255_U16_U16(tmp_high); } else { const int16x8_t vn = vdupq_n_s16(-n); if(is_sat) { tmp_low = vqshlq_u16(tmp_low, vn); tmp_high = vqshlq_u16(tmp_high, vn); } else { tmp_low = vshlq_u16(tmp_low, vn); tmp_high = vshlq_u16(tmp_high, vn); } } if(is_sat) { static const uint16x8_t max = vdupq_n_u16(SHRT_MAX); tmp_low = vminq_u16(tmp_low, max); tmp_high = vminq_u16(tmp_high, max); } vst1q_s16(output_ptr + x, vreinterpretq_s16_u16(tmp_low)); vst1q_s16(output_ptr + x + 8, vreinterpretq_s16_u16(tmp_high)); } // Compute left-over elements for(; x < window_end_x; ++x) { int32_t tmp = static_cast(*(input1_ptr + x)) * static_cast(*(input2_ptr + x)); if(is_scale255) { float tmp_f = static_cast(tmp) * scale255_constant; tmp = static_cast(tmp_f + 0.5f); } else { tmp >>= n; } if(is_sat) { tmp = (tmp > SHRT_MAX) ? SHRT_MAX : tmp; } *(output_ptr + x) = static_cast(tmp); } }, input1, input2, output); } template void mul_S16_U8_S16(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window, int n) { // Create input windows Window win = window; Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape()); Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape()); // Clear X Dimension on execution window as we handle manually win.set(Window::DimX, Window::Dimension(0, 1, 1)); input1_win.set(Window::DimX, Window::Dimension(0, 1, 1)); input2_win.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator input1(in1, input1_win); Iterator input2(in2, input2_win); Iterator output(out, win); const int window_step_x = 16; const auto window_start_x = static_cast(window.x().start()); const auto window_end_x = static_cast(window.x().end()); execute_window_loop(win, [&](const Coordinates &) { const auto input1_ptr = reinterpret_cast(input1.ptr()); const auto input2_ptr = reinterpret_cast(input2.ptr()); const auto output_ptr = reinterpret_cast(output.ptr()); // Compute window_step_x elements per iteration int x = window_start_x; for(; x <= (window_end_x - window_step_x); x += window_step_x) { const int16x8x2_t ta1 = { { vld1q_s16(input1_ptr + x), vld1q_s16(input1_ptr + x + 8), } }; const uint8x8x2_t ta2u = { { vld1_u8(input2_ptr + x), vld1_u8(input2_ptr + x + 8), } }; const int16x8x2_t ta2 = { { vreinterpretq_s16_u16(vmovl_u8(ta2u.val[0])), vreinterpretq_s16_u16(vmovl_u8(ta2u.val[1])) } }; const int16x8x2_t result = mul_S16_S16_S16_n_k(ta1, ta2, n); vst1q_s16(output_ptr + x, result.val[0]); vst1q_s16(output_ptr + x + 8, result.val[1]); } // Compute left-over elements for(; x < window_end_x; ++x) { int32_t tmp = static_cast(*(input1_ptr + x)) * static_cast(*(input2_ptr + x)); if(is_scale255) { float tmp_f = static_cast(tmp) * scale255_constant; tmp = static_cast(tmp_f + 0.5f); } else { if(tmp >= 0) { tmp >>= n; } else { uint32_t mask = (1u << n) - 1; tmp = (tmp + static_cast(mask)) >> n; } } if(is_sat) { tmp = (tmp > SHRT_MAX) ? SHRT_MAX : ((tmp < SHRT_MIN) ? SHRT_MIN : tmp); } *(output_ptr + x) = static_cast(tmp); } }, input1, input2, output); } template void mul_U8_S16_S16(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window, int n) { // Simply swap the two input buffers mul_S16_U8_S16(in2, in1, out, window, n); } } // namespace NEPixelWiseMultiplicationKernel::NEPixelWiseMultiplicationKernel() : _func_float(nullptr), _func_int(nullptr), _func_quantized(nullptr), _scale{ 0 }, _scale_exponent{ 0 } { } void NEPixelWiseMultiplicationKernel::configure(ITensorInfo *input1, ITensorInfo *input2, ITensorInfo *output, float scale, ConvertPolicy overflow_policy, RoundingPolicy rounding_policy) { ARM_COMPUTE_UNUSED(rounding_policy); ARM_COMPUTE_ERROR_ON_NULLPTR(input1, input2, output); ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input1, input2, output, scale, overflow_policy, rounding_policy)); const std::pair broadcast_pair = ITensorInfo::broadcast_shape_and_valid_region(*input1, *input2); const TensorShape &out_shape = broadcast_pair.first; const ValidRegion &valid_region = broadcast_pair.second; // Auto initialize output if not initialized set_shape_if_empty(*output, out_shape); _scale = scale; _scale_exponent = 0; _func_quantized = nullptr; _func_int = nullptr; _func_float = nullptr; bool is_scale_255 = false; // Check and validate scaling factor if(std::abs(scale - scale255_constant) < 0.00001f) { is_scale_255 = true; } else { int exponent = 0; std::frexp(scale, &exponent); // Store the positive exponent. We know that we compute 1/2^n // Additionally we need to subtract 1 to compensate that frexp used a mantissa of 0.5 _scale_exponent = std::abs(exponent - 1); } const DataType dt_input1 = input1->data_type(); const DataType dt_input2 = input2->data_type(); const DataType dt_output = output->data_type(); const bool is_sat = (overflow_policy == ConvertPolicy::SATURATE); switch(dt_input1) { case DataType::QASYMM8: if(dt_input2 == DataType::QASYMM8 && dt_output == DataType::QASYMM8) { _func_quantized = &mul_saturate_quantized_8; } break; case DataType::QASYMM8_SIGNED: if(dt_input2 == DataType::QASYMM8_SIGNED) { _func_quantized = &mul_saturate_quantized_8; ; } break; case DataType::QSYMM16: if(dt_input2 == DataType::QSYMM16 && dt_output == DataType::QSYMM16) { _func_quantized = &mul_saturate_QSYMM16_QSYMM16_QSYMM16; } else if(dt_input2 == DataType::QSYMM16 && dt_output == DataType::S32) { _func_int = &mul_QSYMM16_QSYMM16_S32; } break; case DataType::S16: if(DataType::U8 == dt_input2 && DataType::S16 == dt_output) { if(is_scale_255) { _func_int = is_sat ? &mul_S16_U8_S16 : &mul_S16_U8_S16; } else { _func_int = is_sat ? &mul_S16_U8_S16 : &mul_S16_U8_S16; } } if(DataType::S16 == dt_input2 && DataType::S16 == dt_output) { if(is_scale_255) { _func_int = is_sat ? &mul_S16_S16_S16 : &mul_S16_S16_S16; } else { _func_int = is_sat ? &mul_S16_S16_S16 : &mul_S16_S16_S16; } } break; case DataType::S32: if(DataType::S32 == dt_input2 && DataType::S32 == dt_output) { _func_int = is_sat ? &mul_S32_S32_S32 : &mul_S32_S32_S32; } break; case DataType::U8: if(DataType::U8 == dt_input2 && DataType::U8 == dt_output) { if(is_scale_255) { _func_int = is_sat ? &mul_U8_U8_U8 : &mul_U8_U8_U8; } else { _func_int = is_sat ? &mul_U8_U8_U8 : &mul_U8_U8_U8; } } else if(DataType::U8 == dt_input2 && DataType::S16 == dt_output) { if(is_scale_255) { _func_int = is_sat ? &mul_U8_U8_S16 : &mul_U8_U8_S16; } else { _func_int = is_sat ? &mul_U8_U8_S16 : &mul_U8_U8_S16; } } else if(DataType::S16 == dt_input2 && DataType::S16 == dt_output) { if(is_scale_255) { _func_int = is_sat ? &mul_U8_S16_S16 : &mul_U8_S16_S16; } else { _func_int = is_sat ? &mul_U8_S16_S16 : &mul_U8_S16_S16; } } break; #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC case DataType::F16: _func_float = &mul_F16_F16_F16; break; #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */ case DataType::F32: _func_float = &mul_F32_F32_F32; break; default: ARM_COMPUTE_ERROR("You called with the wrong img formats"); } // Configure kernel window Coordinates coord; coord.set_num_dimensions(output->num_dimensions()); output->set_valid_region(valid_region); Window win = calculate_max_window(valid_region, Steps()); INEKernel::configure(win); } Status NEPixelWiseMultiplicationKernel::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, float scale, ConvertPolicy overflow_policy, RoundingPolicy rounding_policy) { ARM_COMPUTE_ERROR_ON_NULLPTR(input1, input2, output); ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input1, input2, output, scale, overflow_policy, rounding_policy)); return Status{}; } void NEPixelWiseMultiplicationKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info) { ARM_COMPUTE_UNUSED(info); ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window); auto input1 = tensors.get_const_tensor(TensorType::ACL_SRC_0); auto input2 = tensors.get_const_tensor(TensorType::ACL_SRC_1); auto output = tensors.get_tensor(TensorType::ACL_DST); if(_func_quantized != nullptr) { (*_func_quantized)(input1, input2, output, window, _scale); } else if(_func_int != nullptr) { (*_func_int)(input1, input2, output, window, _scale_exponent); } else { ARM_COMPUTE_ERROR_ON(_func_float == nullptr); (*_func_float)(input1, input2, output, window, _scale); } } namespace { Status validate_arguments_complex(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input1, 2, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input2, 2, DataType::F32); const TensorShape &out_shape = TensorShape::broadcast_shape(input1->tensor_shape(), input2->tensor_shape()); ARM_COMPUTE_RETURN_ERROR_ON_MSG(out_shape.total_size() == 0, "Inputs are not broadcast compatible"); // Validate in case of configured output if(output->total_size() > 0) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 2, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON_MSG(detail::have_different_dimensions(out_shape, output->tensor_shape(), 0), "Wrong shape for output"); } return Status{}; } } // namespace void NEComplexPixelWiseMultiplicationKernel::configure(ITensorInfo *input1, ITensorInfo *input2, ITensorInfo *output) { ARM_COMPUTE_ERROR_ON_NULLPTR(input1, input2, output); ARM_COMPUTE_ERROR_THROW_ON(validate_arguments_complex(input1, input2, output)); const std::pair broadcast_pair = ITensorInfo::broadcast_shape_and_valid_region(*input1, *input2); const TensorShape &out_shape = broadcast_pair.first; const ValidRegion &valid_region = broadcast_pair.second; // Auto initialize output if not initialized const TensorInfo out_info(out_shape, input1->num_channels(), input1->data_type()); auto_init_if_empty(*output, out_info); // Configure kernel window Coordinates coord; coord.set_num_dimensions(output->num_dimensions()); output->set_valid_region(valid_region); Window win = calculate_max_window(valid_region, Steps()); INEKernel::configure(win); } Status NEComplexPixelWiseMultiplicationKernel::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output) { ARM_COMPUTE_ERROR_ON_NULLPTR(input1, input2, output); ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_complex(input1, input2, output)); return Status{}; } void NEComplexPixelWiseMultiplicationKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info) { ARM_COMPUTE_UNUSED(info); ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window); auto input1 = tensors.get_const_tensor(TensorType::ACL_SRC_0); auto input2 = tensors.get_const_tensor(TensorType::ACL_SRC_1); auto output = tensors.get_tensor(TensorType::ACL_DST); c_mul_F32_F32_F32_n(input1, input2, output, window); } } // namespace arm_compute