/* * Copyright (c) 2017-2021 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "src/core/NEON/kernels/NENormalizationLayerKernel.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/Utils.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/Window.h" #include "src/core/CPP/Validate.h" #include "src/core/NEON/NEFixedPoint.h" #include "src/core/NEON/NEMath.h" #include "src/core/NEON/wrapper/wrapper.h" #include "src/core/helpers/AutoConfiguration.h" #include "src/core/helpers/NormalizationHelpers.h" #include "src/core/helpers/WindowHelpers.h" namespace arm_compute { namespace { Status validate_arguments(const ITensorInfo *input, const ITensorInfo *input_squared, const ITensorInfo *output, const NormalizationLayerInfo &norm_info) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, input_squared, output); ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F16, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, input_squared); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input, input_squared); ARM_COMPUTE_RETURN_ERROR_ON_MSG(!(norm_info.norm_size() % 2), "Normalization size should be odd"); // Checks performed when output is configured if(output->total_size() != 0) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input, output); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(input, output); } return Status{}; } } // namespace NENormalizationLayerKernel::NENormalizationLayerKernel() : _func(nullptr), _input(nullptr), _input_squared(nullptr), _output(nullptr), _norm_info(NormType::IN_MAP_1D) { } void NENormalizationLayerKernel::configure(const ITensor *input, const ITensor *input_squared, ITensor *output, NormalizationLayerInfo norm_info) { ARM_COMPUTE_ERROR_ON_NULLPTR(input, input_squared, output); // Output tensor auto initialization if not yet initialized auto_init_if_empty(*output->info(), *input->info()); // Perform validation step ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), input_squared->info(), output->info(), norm_info)); const unsigned int norm_idx = get_normalization_dimension_index(input->info()->data_layout(), norm_info); _input = input; _input_squared = input_squared; _output = output; _norm_info = norm_info; switch(_input->info()->data_type()) { case DataType::F32: { switch(norm_idx) { case 0: { if(norm_info.type() == NormType::IN_MAP_2D) { _func = &NENormalizationLayerKernel::normalize_float; } else { _func = &NENormalizationLayerKernel::normalize_float; } break; } case 1: if(norm_info.type() == NormType::IN_MAP_2D) { _func = &NENormalizationLayerKernel::normalize_float; } else { _func = &NENormalizationLayerKernel::normalize_float; } break; case 2: _func = &NENormalizationLayerKernel::normalize_float; break; default: break; } break; } #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC case DataType::F16: { switch(norm_idx) { case 0: { if(norm_info.type() == NormType::IN_MAP_2D) { _func = &NENormalizationLayerKernel::normalize_float; } else { _func = &NENormalizationLayerKernel::normalize_float; } break; } case 1: if(norm_info.type() == NormType::IN_MAP_2D) { _func = &NENormalizationLayerKernel::normalize_float; } else { _func = &NENormalizationLayerKernel::normalize_float; } break; case 2: _func = &NENormalizationLayerKernel::normalize_float; break; default: break; } break; } #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */ default: ARM_COMPUTE_ERROR("NOT SUPPORTED!"); } // Configure kernel window Window win = calculate_max_window(*input->info(), Steps()); INEKernel::configure(win); } template void NENormalizationLayerKernel::normalize_float(const Window &window) { /** SIMD vector tag type. */ using ExactTagType = typename wrapper::traits::neon_vector::tag_type; Window win(window); win.set(Window::DimX, Window::Dimension(0, 1, 1)); const auto window_start_x = static_cast(window.x().start()); const auto window_end_x = static_cast(window.x().end()); const int window_step_x = S; Iterator input(_input, win); Iterator input_squared(_input_squared, win); Iterator output(_output, win); const int dim_y = _input->info()->data_layout() == DataLayout::NCHW ? 1 : 2; const int radius = _norm_info.norm_size() / 2; const int input_squared_stride_x = _input_squared->info()->strides_in_bytes()[0]; const int input_squared_stride_slice = _input_squared->info()->strides_in_bytes()[dim]; const int input_squared_stride_row = _input_squared->info()->strides_in_bytes()[dim_y]; const int max_right = _input->info()->dimension(dim) - 1; const int max_bottom = _input->info()->dimension(dim_y) - 1; const auto coeff_vec = wrapper::vdup_n(static_cast(_norm_info.scale_coeff()), ExactTagType{}); const auto beta_vec = wrapper::vdup_n(static_cast(_norm_info.beta()), ExactTagType{}); const auto kappa_vec = wrapper::vdup_n(static_cast(_norm_info.kappa()), ExactTagType{}); auto sequential_normalization = [&](const int x, const Coordinates & id, const int current_row, const int first_row, const int last_row, const T * input_ptr, const uint8_t *input_squared_start_ptr, T * output_ptr) { const int current_slice = dim == 0 ? x : id[dim]; const int first_slice = std::max(current_slice - radius, 0); const int last_slice = std::min(current_slice + radius, max_right); const uint8_t *const input_squared_x_ptr = input_squared_start_ptr + x * input_squared_stride_x; // Accumulate 2D In-Map values auto accu = static_cast(0.f); for(int j = first_row; j <= last_row; ++j) { // Compute row displacement const uint8_t *const input_squared_ptr = input_squared_x_ptr + (j - current_row) * input_squared_stride_row; for(int i = first_slice; i <= last_slice; ++i) { accu += *reinterpret_cast(input_squared_ptr + (i - current_slice) * input_squared_stride_slice); } } // Normalize const auto normalized = std::pow(accu * static_cast(_norm_info.scale_coeff()) + static_cast(_norm_info.kappa()), _norm_info.beta()); const auto normalized_pixel = (*(input_ptr + x)) / normalized; *(output_ptr + x) = normalized_pixel; }; execute_window_loop(win, [&](const Coordinates & id) { const auto input_ptr = reinterpret_cast(input.ptr()); auto output_ptr = reinterpret_cast(output.ptr()); // Get range to normalize const int current_row = do_2D_norm ? id[dim_y] : 0; const int first_row = do_2D_norm ? std::max(current_row - radius, 0) : 0; const int last_row = do_2D_norm ? std::min(current_row + radius, max_bottom) : 0; int x = window_start_x; // Compute serially starting elements for the case x dimension is width for(; x < radius && x < window_end_x && dim == 0; ++x) { sequential_normalization(x, id, current_row, first_row, last_row, input_ptr, input_squared.ptr(), output_ptr); } // Compute vectorized for(; x <= window_end_x - window_step_x - radius; x += window_step_x) { const int current_slice = dim == 0 ? x : id[dim]; const int first_slice = std::max(current_slice - radius, 0); const int last_slice = std::min(current_slice + radius, max_right); const uint8_t *const input_squared_x_ptr = input_squared.ptr() + x * input_squared_stride_x; // Accumulate 2D In-Map values auto accu = wrapper::vdup_n(static_cast(0.f), ExactTagType{}); for(int j = first_row; j <= last_row; ++j) { // Compute row displacement const uint8_t *const input_squared_ptr = input_squared_x_ptr + (j - current_row) * input_squared_stride_row; for(int i = first_slice; i <= last_slice; ++i) { accu = wrapper::vadd(accu, wrapper::vloadq(reinterpret_cast(input_squared_ptr + (i - current_slice) * input_squared_stride_slice))); } } // Normalize const auto normalized = wrapper::vpow(wrapper::vmla(kappa_vec, coeff_vec, accu), beta_vec); const auto normalized_pixel = wrapper::vmul(wrapper::vloadq(input_ptr + x), wrapper::vinv(normalized)); wrapper::vstore(reinterpret_cast(output_ptr + x), normalized_pixel); } // Compute left-over elements for(; x < window_end_x; ++x) { sequential_normalization(x, id, current_row, first_row, last_row, input_ptr, input_squared.ptr(), output_ptr); } }, input, input_squared, output); } Status NENormalizationLayerKernel::validate(const ITensorInfo *input, const ITensorInfo *input_squared, const ITensorInfo *output, const NormalizationLayerInfo norm_info) { ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, input_squared, output, norm_info)); return Status{}; } void NENormalizationLayerKernel::run(const Window &window, const ThreadInfo &info) { ARM_COMPUTE_UNUSED(info); ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window); ARM_COMPUTE_ERROR_ON(_func == nullptr); // Run function (this->*_func)(window); } } // namespace arm_compute