/* * Copyright (c) 2017-2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/NEON/kernels/NEMinMaxLayerKernel.h" #include "arm_compute/core/Coordinates.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/IAccessWindow.h" #include "arm_compute/core/ITensor.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/Types.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/Window.h" #include "arm_compute/core/utils/misc/ShapeCalculator.h" #include #include #include #include using namespace arm_compute::misc::shape_calculator; namespace arm_compute { namespace { Status validate_arguments(const ITensorInfo *input, const ITensorInfo *output) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, output); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON(input->num_dimensions() < 3); if(output->tensor_shape().total_size() > 0) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output); TensorShape output_shape = compute_min_max_shape(input); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(output->tensor_shape(), output_shape); } return Status{}; } std::tuple validate_and_configure_window(ITensorInfo *input, ITensorInfo *output) { TensorShape output_shape = compute_min_max_shape(input); // Output auto initialization if not yet initialized auto_init_if_empty(*output, output_shape, 1, input->data_type()); constexpr unsigned int num_elems_processed_per_iteration = 1; // Configure kernel window Window win = calculate_max_window(*input, Steps(num_elems_processed_per_iteration)); AccessWindowHorizontal input_access(input, 0, num_elems_processed_per_iteration); AccessWindowHorizontal output_access(output, 0, 2); bool window_changed = update_window_and_padding(win, input_access, output_access); output_access.set_valid_region(win, ValidRegion(Coordinates(), output->tensor_shape())); Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{}; return std::make_tuple(err, win); } } // namespace NEMinMaxLayerKernel::NEMinMaxLayerKernel() : _input(nullptr), _output(nullptr), _mtx() { } void NEMinMaxLayerKernel::configure(const ITensor *input, ITensor *output) { ARM_COMPUTE_ERROR_ON_NULLPTR(input, output); ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), output->info())); _input = input; _output = output; auto win_config = validate_and_configure_window(input->info(), output->info()); ARM_COMPUTE_ERROR_THROW_ON(std::get<0>(win_config)); INEKernel::configure(std::get<1>(win_config)); } Status NEMinMaxLayerKernel::validate(const ITensorInfo *input, const ITensorInfo *output) { ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, output)); ARM_COMPUTE_RETURN_ON_ERROR(std::get<0>(validate_and_configure_window(input->clone().get(), output->clone().get()))); return Status{}; } void NEMinMaxLayerKernel::run(const Window &window, const ThreadInfo &info) { ARM_COMPUTE_UNUSED(info); ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window); const int x_start = window.x().start(); const int x_end = window.x().end(); Window window_output; window_output.use_tensor_dimensions(_output->info()->tensor_shape()); window_output.set(Window::DimX, Window::Dimension(0, 1, 1)); // Handle X dimension manually to split into two loops // First one will use vector operations, second one processes the left over pixels Window window_input(window); window_input.set(Window::DimX, Window::Dimension(0, 1, 1)); window_input.set(3, Window::Dimension(0, 1, 1)); Iterator input(_input, window_input); Iterator output(_output, window_output); execute_window_loop(window_output, [&](const Coordinates & id_batch) { float32x2_t carry_min = vdup_n_f32(std::numeric_limits::max()); float32x2_t carry_max = vdup_n_f32(std::numeric_limits::lowest()); float carry_min_scalar = std::numeric_limits::max(); float carry_max_scalar = std::numeric_limits::lowest(); execute_window_loop(window_input, [&](const Coordinates &) { int x = x_start; const auto in_ptr = reinterpret_cast(input.ptr() + id_batch[1] * _input->info()->strides_in_bytes()[3]); // Vector loop for(; x <= x_end - 8; x += 8) { const float32x4x2_t pixels = vld2q_f32(in_ptr + x); const float32x4_t tmp_min1 = vminq_f32(pixels.val[0], pixels.val[1]); const float32x4_t tmp_max1 = vmaxq_f32(pixels.val[0], pixels.val[1]); const float32x2_t tmp_min2 = vmin_f32(vget_high_f32(tmp_min1), vget_low_f32(tmp_min1)); const float32x2_t tmp_max2 = vmax_f32(vget_high_f32(tmp_max1), vget_low_f32(tmp_max1)); carry_min = vmin_f32(tmp_min2, carry_min); carry_max = vmax_f32(tmp_max2, carry_max); } // Process leftover pixels for(; x < x_end; ++x) { const float pixel = in_ptr[x]; carry_min_scalar = std::min(pixel, carry_min_scalar); carry_max_scalar = std::max(pixel, carry_max_scalar); } }, input); // Reduce result carry_min = vpmin_f32(carry_min, carry_min); carry_max = vpmax_f32(carry_max, carry_max); carry_min = vpmin_f32(carry_min, carry_min); carry_max = vpmax_f32(carry_max, carry_max); // Extract max/min values const float min_i = std::min(vget_lane_f32(carry_min, 0), carry_min_scalar); const float max_i = std::max(vget_lane_f32(carry_max, 0), carry_max_scalar); auto out_ptr = reinterpret_cast(output.ptr()); // Perform reduction of local min/max values update_min_max(out_ptr, min_i, max_i); }, output); } void NEMinMaxLayerKernel::reset() { ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); float32x2_t reset_values = vdup_n_f32(0.0f); reset_values = vset_lane_f32(std::numeric_limits::max(), reset_values, 0); reset_values = vset_lane_f32(std::numeric_limits::lowest(), reset_values, 1); Window window_output; window_output.use_tensor_dimensions(_output->info()->tensor_shape()); window_output.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator output(_output, window_output); execute_window_loop(window_output, [&](const Coordinates &) { vst1_f32(reinterpret_cast(output.ptr()), reset_values); }, output); } void NEMinMaxLayerKernel::update_min_max(float *out_ptr, float min, float max) { arm_compute::lock_guard lock(_mtx); const float32x2_t old_min = vld1_dup_f32(out_ptr); const float32x2_t old_max = vld1_dup_f32(out_ptr + 1); const float32x2_t new_min = vmin_f32(vdup_n_f32(min), old_min); const float32x2_t new_max = vmax_f32(vdup_n_f32(max), old_max); vst1_f32(out_ptr, vzip_f32(new_min, new_max).val[0]); } } // namespace arm_compute