/* * Copyright (c) 2020 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "src/core/NEON/kernels/NELogicalKernel.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/Validate.h" #include "src/core/common/Validate.h" #include "src/core/helpers/AutoConfiguration.h" #include "src/core/helpers/WindowHelpers.h" #include namespace arm_compute { namespace kernels { namespace { static const uint8x8_t c0_x8 = vdup_n_u8(0); static const uint8x16_t c0_x16 = vdupq_n_u8(0); static const uint8x8_t c1_x8 = vdup_n_u8(1); static const uint8x16_t c1_x16 = vdupq_n_u8(1); static const int step = 16; static const int half_step = step / 2; void neon_logical_and(const uint8_t *src0, const uint8_t *src1, uint8_t *dst, int len) { ARM_COMPUTE_ASSERT_NOT_NULLPTR(src0); ARM_COMPUTE_ASSERT_NOT_NULLPTR(src1); ARM_COMPUTE_ASSERT_NOT_NULLPTR(dst); ARM_COMPUTE_ASSERT(len >= 0); for(; len >= step; len -= step) { vst1q_u8(dst, vandq_u8(vminq_u8(vld1q_u8(src0), c1_x16), vminq_u8(vld1q_u8(src1), c1_x16))); src0 += step; src1 += step; dst += step; } for(; len >= half_step; len -= half_step) { vst1_u8(dst, vand_u8(vmin_u8(vld1_u8(src0), c1_x8), vmin_u8(vld1_u8(src1), c1_x8))); src0 += half_step; src1 += half_step; dst += half_step; } for(; len > 0; --len) { *dst = (*src0) && (*src1); ++src0; ++src1; ++dst; } } void neon_logical_and_broadcast(const uint8_t *src, uint8_t broadcast_val, uint8_t *dst, int len) { ARM_COMPUTE_ASSERT_NOT_NULLPTR(src); ARM_COMPUTE_ASSERT_NOT_NULLPTR(dst); ARM_COMPUTE_ASSERT(len >= 0); const auto broadcast_val_clamped_s = std::min(broadcast_val, 1); const auto broadcast_val_clamped_x16 = vdupq_n_u8(broadcast_val_clamped_s); const auto broadcast_val_clamped_x8 = vdup_n_u8(broadcast_val_clamped_s); for(; len >= step; len -= step) { vst1q_u8(dst, vandq_u8(vminq_u8(vld1q_u8(src), c1_x16), broadcast_val_clamped_x16)); src += step; dst += step; } for(; len >= half_step; len -= half_step) { vst1_u8(dst, vand_u8(vmin_u8(vld1_u8(src), c1_x8), broadcast_val_clamped_x8)); src += half_step; dst += half_step; } for(; len > 0; --len) { *dst = (*src) && broadcast_val_clamped_s; ++src; ++dst; } } void neon_logical_or(const uint8_t *src0, const uint8_t *src1, uint8_t *dst, int len) { ARM_COMPUTE_ASSERT_NOT_NULLPTR(src0); ARM_COMPUTE_ASSERT_NOT_NULLPTR(src1); ARM_COMPUTE_ASSERT_NOT_NULLPTR(dst); ARM_COMPUTE_ASSERT(len >= 0); for(; len >= step; len -= step) { vst1q_u8(dst, vorrq_u8(vminq_u8(vld1q_u8(src0), c1_x16), vminq_u8(vld1q_u8(src1), c1_x16))); src0 += step; src1 += step; dst += step; } for(; len >= half_step; len -= half_step) { vst1_u8(dst, vorr_u8(vmin_u8(vld1_u8(src0), c1_x8), vmin_u8(vld1_u8(src1), c1_x8))); src0 += half_step; src1 += half_step; dst += half_step; } for(; len > 0; --len) { *dst = (*src0) || (*src1); ++src0; ++src1; ++dst; } } void neon_logical_or_broadcast(const uint8_t *src, uint8_t broadcast_val, uint8_t *dst, int len) { ARM_COMPUTE_ASSERT_NOT_NULLPTR(src); ARM_COMPUTE_ASSERT_NOT_NULLPTR(dst); ARM_COMPUTE_ASSERT(len >= 0); const auto broadcast_val_clamped_s = std::min(broadcast_val, 1); const auto broadcast_val_clamped_x16 = vdupq_n_u8(broadcast_val_clamped_s); const auto broadcast_val_clamped_x8 = vdup_n_u8(broadcast_val_clamped_s); for(; len >= step; len -= step) { vst1q_u8(dst, vorrq_u8(vminq_u8(vld1q_u8(src), c1_x16), broadcast_val_clamped_x16)); src += step; dst += step; } for(; len >= half_step; len -= half_step) { vst1_u8(dst, vorr_u8(vmin_u8(vld1_u8(src), c1_x8), broadcast_val_clamped_x8)); src += half_step; dst += half_step; } for(; len > 0; --len) { *dst = (*src) || broadcast_val_clamped_s; ++src; ++dst; } } void neon_logical_not(const uint8_t *src, uint8_t *dst, int len) { ARM_COMPUTE_ASSERT_NOT_NULLPTR(src); ARM_COMPUTE_ASSERT_NOT_NULLPTR(dst); ARM_COMPUTE_ASSERT(len >= 0); for(; len >= step; len -= step) { vst1q_u8(dst, vbslq_u8(vceqq_u8(vld1q_u8(src), c0_x16), c1_x16, c0_x16)); src += step; dst += step; } for(; len >= half_step; len -= half_step) { vst1_u8(dst, vbsl_u8(vceq_u8(vld1_u8(src), c0_x8), c1_x8, c0_x8)); src += half_step; dst += half_step; } for(; len > 0; --len) { *dst = !(*src); ++src; ++dst; } } void run_unary(const Window &window, const ITensor *src, ITensor *dst) { Window win{ window }; win.set(Window::DimX, Window::Dimension(0, 1, 1)); const auto len = static_cast(window.x().end()) - static_cast(window.x().start()); Iterator in(src, win); Iterator out(dst, win); execute_window_loop(win, [&](const Coordinates &) { neon_logical_not(in.ptr(), out.ptr(), len); }, in, out); } void run_binary(const Window &window, const ITensor *src0, const ITensor *src1, ITensor *dst, LogicalOperation op) { Window src0_win = window.broadcast_if_dimension_le_one(src0->info()->tensor_shape()); Window src1_win = window.broadcast_if_dimension_le_one(src1->info()->tensor_shape()); Window win{ window }; win.set(Window::DimX, Window::Dimension(0, 1, 1)); const bool is_broadcast_across_x = src0->info()->tensor_shape().x() != src1->info()->tensor_shape().x(); const auto len = static_cast(window.x().end()) - static_cast(window.x().start()); if(is_broadcast_across_x) { using LogicalBroadcastUKernelPtr = std::add_pointer::type; LogicalBroadcastUKernelPtr logical_func = op == LogicalOperation::Or ? &neon_logical_or_broadcast : &neon_logical_and_broadcast; const bool is_broadcast_input_1 = src1_win.x().step() == 0; Window broadcast_win = is_broadcast_input_1 ? src1_win : src0_win; Window non_broadcast_win = !is_broadcast_input_1 ? src1_win : src0_win; const ITensor *broadcast_tensor = is_broadcast_input_1 ? src1 : src0; const ITensor *non_broadcast_tensor = !is_broadcast_input_1 ? src1 : src0; non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator broadcast_in(broadcast_tensor, broadcast_win); Iterator non_broadcast_in(non_broadcast_tensor, non_broadcast_win); Iterator out(dst, win); execute_window_loop(win, [&](const Coordinates &) { const uint8_t broadcast_value = *broadcast_in.ptr(); logical_func(non_broadcast_in.ptr(), broadcast_value, out.ptr(), len); }, broadcast_in, non_broadcast_in, out); } else { using LogicalUKernelPtr = std::add_pointer::type; LogicalUKernelPtr logical_func = op == LogicalOperation::Or ? &neon_logical_or : &neon_logical_and; src0_win.set(Window::DimX, Window::Dimension(0, 1, 1)); src1_win.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator in0(src0, src0_win); Iterator in1(src1, src1_win); Iterator out(dst, win); execute_window_loop(win, [&](const Coordinates &) { logical_func(in0.ptr(), in1.ptr(), out.ptr(), len); }, in0, in1, out); } } } // namespace const char *NELogicalKernel::name() const { return "NELogicalKernel"; } void NELogicalKernel::configure(const ITensorInfo *input1, const ITensorInfo *input2, ITensorInfo *output, LogicalOperation op) { ARM_COMPUTE_ERROR_ON_NULLPTR(input1, output); ARM_COMPUTE_ERROR_THROW_ON(validate(input1, input2, output, op)); _op = op; Window win = calculate_max_window(*input1, Steps()); TensorShape out_shape = input1->tensor_shape(); if(op != LogicalOperation::Not) { ARM_COMPUTE_ERROR_ON_NULLPTR(input2); const std::pair broadcast_pair = ITensorInfo::broadcast_shape_and_valid_region(*input1, *input2); out_shape = broadcast_pair.first; win = calculate_max_window(broadcast_pair.second, Steps()); } ICPPKernel::configure(win); // Auto initialize if empty set_shape_if_empty(*output, out_shape); set_data_type_if_unknown(*output, input1->data_type()); } Status NELogicalKernel::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, LogicalOperation op) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input1, 1, DataType::U8); ARM_COMPUTE_RETURN_ERROR_ON(op == LogicalOperation::Unknown); TensorShape out_shape = input1->tensor_shape(); if(op != LogicalOperation::Not) { out_shape = TensorShape::broadcast_shape(input1->tensor_shape(), input2->tensor_shape()); ARM_COMPUTE_RETURN_ERROR_ON_MSG(out_shape.total_size() == 0, "Inputs are not broadcast compatible"); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input1, input2); } // Checks performed when output is configured if((output != nullptr) && (output->total_size() != 0)) { ARM_COMPUTE_RETURN_ERROR_ON(detail::have_different_dimensions(out_shape, output->tensor_shape(), 0)); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input1, output); } return Status{}; } void NELogicalKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info) { ARM_COMPUTE_UNUSED(info); ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window); ARM_COMPUTE_ERROR_ON(tensors.empty()); const ITensor *src0 = tensors.get_const_tensor(TensorType::ACL_SRC_0); const ITensor *src1 = tensors.get_const_tensor(TensorType::ACL_SRC_1); ITensor *dst = tensors.get_tensor(TensorType::ACL_DST); if(_op == LogicalOperation::Not) { run_unary(window, src0, dst); } else { run_binary(window, src0, src1, dst, _op); } } } // namespace kernels } // namespace arm_compute