/* * Copyright (c) 2017-2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/NEON/kernels/NELocallyConnectedMatrixMultiplyKernel.h" #include "arm_compute/core/CPP/Validate.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/IAccessWindow.h" #include "arm_compute/core/ITensor.h" #include "arm_compute/core/NEON/NEFixedPoint.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/Types.h" #include "arm_compute/core/Utils.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/Window.h" #include #include #include #include namespace arm_compute { class Coordinates; namespace { void vector_matrix_multiply_f16(const ITensor *input0, const ITensor *input1, ITensor *output, const Window &window, const ThreadInfo &info) { #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC const auto width_matrix_b = static_cast(output->info()->dimension(0)); const auto in_b_stride = static_cast(input1->info()->strides_in_bytes()[1] / data_size_from_type(input1->info()->data_type())); const auto num_elems_vec_a = static_cast(input0->info()->dimension(0)); // The implementation computes 16 elements per iteration const int window_start_x = 16 * info.thread_id; const int window_step_x = 16 * info.num_threads; // Make sure (window_end_x - window_start_x) is a multiple of window_step_x const int window_end_x = ceil_to_multiple(width_matrix_b - window_start_x, window_step_x) + window_start_x; Window win_out(window); win_out.set(Window::DimX, Window::Dimension(window_start_x, window_end_x, window_step_x)); Window win_a(window); win_a.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator ina(input0, win_a); Iterator out(output, win_out); execute_window_loop(win_out, [&](const Coordinates & id) { if(id.x() > width_matrix_b) { return; } float16x8_t acc0 = vdupq_n_f16(0.f); float16x8_t acc1 = vdupq_n_f16(0.f); float16x8_t acc2 = vdupq_n_f16(0.f); float16x8_t acc3 = vdupq_n_f16(0.f); auto vec_a = reinterpret_cast(ina.ptr()); auto matrix_b = reinterpret_cast(input1->ptr_to_element(Coordinates(id[0], 0, id[1]))); const float16_t *vec_a_end_addr = vec_a + num_elems_vec_a; for(; vec_a <= (vec_a_end_addr - 4);) { const float16x4_t a0l = vld1_f16(vec_a); float16x8_t b00 = vld1q_f16(matrix_b); float16x8_t b01 = vld1q_f16(matrix_b + 8 + 0 * in_b_stride); float16x8_t b02 = vld1q_f16(matrix_b + 16 + 0 * in_b_stride); float16x8_t b03 = vld1q_f16(matrix_b + 24 + 0 * in_b_stride); float16x8_t b10 = vld1q_f16(matrix_b + 0 + 1 * in_b_stride); float16x8_t b11 = vld1q_f16(matrix_b + 8 + 1 * in_b_stride); float16x8_t b12 = vld1q_f16(matrix_b + 16 + 1 * in_b_stride); float16x8_t b13 = vld1q_f16(matrix_b + 24 + 1 * in_b_stride); acc0 = vaddq_f16(acc0, vmulq_lane_f16(b00, a0l, 0)); acc1 = vaddq_f16(acc1, vmulq_lane_f16(b01, a0l, 0)); acc2 = vaddq_f16(acc2, vmulq_lane_f16(b02, a0l, 0)); acc3 = vaddq_f16(acc3, vmulq_lane_f16(b03, a0l, 0)); acc0 = vaddq_f16(acc0, vmulq_lane_f16(b10, a0l, 1)); acc1 = vaddq_f16(acc1, vmulq_lane_f16(b11, a0l, 1)); acc2 = vaddq_f16(acc2, vmulq_lane_f16(b12, a0l, 1)); acc3 = vaddq_f16(acc3, vmulq_lane_f16(b13, a0l, 1)); matrix_b += 2 * in_b_stride; b00 = vld1q_f16(matrix_b); b01 = vld1q_f16(matrix_b + 8 + 0 * in_b_stride); b02 = vld1q_f16(matrix_b + 16 + 0 * in_b_stride); b03 = vld1q_f16(matrix_b + 24 + 0 * in_b_stride); b10 = vld1q_f16(matrix_b + 0 + 1 * in_b_stride); b11 = vld1q_f16(matrix_b + 8 + 1 * in_b_stride); b12 = vld1q_f16(matrix_b + 16 + 1 * in_b_stride); b13 = vld1q_f16(matrix_b + 24 + 1 * in_b_stride); acc0 = vaddq_f16(acc0, vmulq_lane_f16(b00, a0l, 2)); acc1 = vaddq_f16(acc1, vmulq_lane_f16(b01, a0l, 2)); acc2 = vaddq_f16(acc2, vmulq_lane_f16(b02, a0l, 2)); acc3 = vaddq_f16(acc3, vmulq_lane_f16(b03, a0l, 2)); acc0 = vaddq_f16(acc0, vmulq_lane_f16(b10, a0l, 3)); acc1 = vaddq_f16(acc1, vmulq_lane_f16(b11, a0l, 3)); acc2 = vaddq_f16(acc2, vmulq_lane_f16(b12, a0l, 3)); acc3 = vaddq_f16(acc3, vmulq_lane_f16(b13, a0l, 3)); vec_a += 4; matrix_b += 2 * in_b_stride; } for(; vec_a < vec_a_end_addr;) { const float16_t a0 = *vec_a; const float16x8_t b00 = vld1q_f16(matrix_b); const float16x8_t b01 = vld1q_f16(matrix_b + 8 + 0 * in_b_stride); const float16x8_t b02 = vld1q_f16(matrix_b + 16 + 0 * in_b_stride); const float16x8_t b03 = vld1q_f16(matrix_b + 24 + 0 * in_b_stride); acc0 = vaddq_f16(acc0, vmulq_n_f16(b00, a0)); acc1 = vaddq_f16(acc1, vmulq_n_f16(b01, a0)); acc2 = vaddq_f16(acc2, vmulq_n_f16(b02, a0)); acc3 = vaddq_f16(acc3, vmulq_n_f16(b03, a0)); vec_a += 1; matrix_b += in_b_stride; } const auto vec_out = reinterpret_cast(out.ptr()); vst1q_f16(vec_out + 0, acc0); vst1q_f16(vec_out + 8, acc1); vst1q_f16(vec_out + 16, acc2); vst1q_f16(vec_out + 24, acc3); }, ina, out); #else /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */ ARM_COMPUTE_UNUSED(input0); ARM_COMPUTE_UNUSED(input1); ARM_COMPUTE_UNUSED(output); ARM_COMPUTE_UNUSED(window); ARM_COMPUTE_UNUSED(info); ARM_COMPUTE_ERROR("Not supported, recompile with -march=armv8.2-a+fp16+simd."); #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */ } void vector_matrix_multiply_f32(const ITensor *input0, const ITensor *input1, ITensor *output, const Window &window, const ThreadInfo &info) { const auto width_matrix_b = static_cast(output->info()->dimension(0)); const auto in_b_stride = static_cast(input1->info()->strides_in_bytes()[1] / data_size_from_type(input1->info()->data_type())); const auto num_elems_vec_a = static_cast(input0->info()->dimension(0)); // The implementation computes 16 elements per iteration const int window_start_x = 16 * info.thread_id; const int window_step_x = 16 * info.num_threads; // Make sure (window_end_x - window_start_x) is a multiple of window_step_x const int window_end_x = ceil_to_multiple(width_matrix_b - window_start_x, window_step_x) + window_start_x; Window win_out(window); win_out.set(Window::DimX, Window::Dimension(window_start_x, window_end_x, window_step_x)); Window win_a(window); win_a.set(Window::DimX, Window::Dimension(0, 0, 0)); Iterator ina(input0, win_a); Iterator out(output, win_out); execute_window_loop(win_out, [&](const Coordinates & id) { if(id.x() > width_matrix_b) { return; } float32x4_t acc0 = vdupq_n_f32(0.f); float32x4_t acc1 = vdupq_n_f32(0.f); float32x4_t acc2 = vdupq_n_f32(0.f); float32x4_t acc3 = vdupq_n_f32(0.f); auto vec_a = reinterpret_cast(ina.ptr()); auto matrix_b = reinterpret_cast(input1->ptr_to_element(Coordinates(id[0], 0, id[1]))); #if __arm__ asm volatile("PLD [%0, #128*4]" ::"r"(reinterpret_cast(vec_a))); asm volatile("PLD [%0, #128*4]" ::"r"(reinterpret_cast(matrix_b))); asm volatile("PLD [%0, #128*4]" ::"r"(reinterpret_cast(matrix_b + in_b_stride))); #endif /* __arm__ */ const float *vec_a_end_addr = vec_a + num_elems_vec_a; for(; vec_a <= (vec_a_end_addr - 4);) { float32x2_t a0l = vld1_f32(vec_a); float32x4_t b00 = vld1q_f32(matrix_b + 0 + 0 * in_b_stride); float32x4_t b01 = vld1q_f32(matrix_b + 4 + 0 * in_b_stride); float32x4_t b02 = vld1q_f32(matrix_b + 8 + 0 * in_b_stride); float32x4_t b03 = vld1q_f32(matrix_b + 12 + 0 * in_b_stride); float32x4_t b10 = vld1q_f32(matrix_b + 0 + 1 * in_b_stride); float32x4_t b11 = vld1q_f32(matrix_b + 4 + 1 * in_b_stride); float32x4_t b12 = vld1q_f32(matrix_b + 8 + 1 * in_b_stride); float32x4_t b13 = vld1q_f32(matrix_b + 12 + 1 * in_b_stride); #if __arm__ asm volatile("PLD [%0, #128*4]" ::"r"(reinterpret_cast(vec_a))); asm volatile("PLD [%0, #128*1]" ::"r"(reinterpret_cast(matrix_b + 1 * in_b_stride))); asm volatile("PLD [%0, #128*1]" ::"r"(reinterpret_cast(matrix_b + 2 * in_b_stride))); asm volatile("PLD [%0, #128*1]" ::"r"(reinterpret_cast(matrix_b + 3 * in_b_stride))); asm volatile("PLD [%0, #128*1]" ::"r"(reinterpret_cast(matrix_b + 4 * in_b_stride))); #endif /* __arm__ */ acc0 = vmlaq_lane_f32(acc0, b00, a0l, 0); acc1 = vmlaq_lane_f32(acc1, b01, a0l, 0); acc2 = vmlaq_lane_f32(acc2, b02, a0l, 0); acc3 = vmlaq_lane_f32(acc3, b03, a0l, 0); acc0 = vmlaq_lane_f32(acc0, b10, a0l, 1); acc1 = vmlaq_lane_f32(acc1, b11, a0l, 1); acc2 = vmlaq_lane_f32(acc2, b12, a0l, 1); acc3 = vmlaq_lane_f32(acc3, b13, a0l, 1); vec_a += 2; matrix_b += 2 * in_b_stride; a0l = vld1_f32(vec_a); b00 = vld1q_f32(matrix_b + 0 + 0 * in_b_stride); b01 = vld1q_f32(matrix_b + 4 + 0 * in_b_stride); b02 = vld1q_f32(matrix_b + 8 + 0 * in_b_stride); b03 = vld1q_f32(matrix_b + 12 + 0 * in_b_stride); b10 = vld1q_f32(matrix_b + 0 + 1 * in_b_stride); b11 = vld1q_f32(matrix_b + 4 + 1 * in_b_stride); b12 = vld1q_f32(matrix_b + 8 + 1 * in_b_stride); b13 = vld1q_f32(matrix_b + 12 + 1 * in_b_stride); acc0 = vmlaq_lane_f32(acc0, b00, a0l, 0); acc1 = vmlaq_lane_f32(acc1, b01, a0l, 0); acc2 = vmlaq_lane_f32(acc2, b02, a0l, 0); acc3 = vmlaq_lane_f32(acc3, b03, a0l, 0); acc0 = vmlaq_lane_f32(acc0, b10, a0l, 1); acc1 = vmlaq_lane_f32(acc1, b11, a0l, 1); acc2 = vmlaq_lane_f32(acc2, b12, a0l, 1); acc3 = vmlaq_lane_f32(acc3, b13, a0l, 1); vec_a += 2; matrix_b += 2 * in_b_stride; } for(; vec_a < vec_a_end_addr;) { const float a0 = *vec_a; const float32x4_t b00 = vld1q_f32(matrix_b + 0 + 0 * in_b_stride); const float32x4_t b01 = vld1q_f32(matrix_b + 4 + 0 * in_b_stride); const float32x4_t b02 = vld1q_f32(matrix_b + 8 + 0 * in_b_stride); const float32x4_t b03 = vld1q_f32(matrix_b + 12 + 0 * in_b_stride); acc0 = vmlaq_n_f32(acc0, b00, a0); acc1 = vmlaq_n_f32(acc1, b01, a0); acc2 = vmlaq_n_f32(acc2, b02, a0); acc3 = vmlaq_n_f32(acc3, b03, a0); vec_a += 1; matrix_b += in_b_stride; } const auto vec_out = reinterpret_cast(out.ptr()); vst1q_f32(vec_out + 0, acc0); vst1q_f32(vec_out + 4, acc1); vst1q_f32(vec_out + 8, acc2); vst1q_f32(vec_out + 12, acc3); }, ina, out); } Status validate_arguments(const ITensorInfo *input0, const ITensorInfo *input1, const ITensorInfo *output) { ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input0); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input0, 1, DataType::F16, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input1, 1, DataType::F16, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::F16, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input0, input1, output); ARM_COMPUTE_RETURN_ERROR_ON(input0->dimension(0) != input1->dimension(1)); return Status{}; } std::tuple validate_and_configure_window(ITensorInfo *input0, ITensorInfo *input1, ITensorInfo *output) { constexpr unsigned int num_elems_processed_per_iteration_x = 16; Window win = calculate_max_window(*output, Steps(num_elems_processed_per_iteration_x)); AccessWindowHorizontal input0_access(input0, 0, num_elems_processed_per_iteration_x); AccessWindowHorizontal input1_access(input1, 0, num_elems_processed_per_iteration_x); AccessWindowHorizontal output_access(output, 0, num_elems_processed_per_iteration_x); bool window_changed = update_window_and_padding(win, input0_access, input1_access, output_access); output_access.set_valid_region(win, ValidRegion(Coordinates(), output->tensor_shape())); Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{}; return std::make_tuple(err, win); } } // namespace NELocallyConnectedMatrixMultiplyKernel::NELocallyConnectedMatrixMultiplyKernel() : _input0(nullptr), _input1(nullptr), _output(nullptr) { } void NELocallyConnectedMatrixMultiplyKernel::configure(const ITensor *input0, const ITensor *input1, ITensor *output) { ARM_COMPUTE_ERROR_ON_NULLPTR(input0, input1, output); ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input0->info(), input1->info(), output->info())); _input0 = input0; _input1 = input1; _output = output; // Configure kernel window auto win_config = validate_and_configure_window(input0->info(), input1->info(), output->info()); ARM_COMPUTE_ERROR_THROW_ON(std::get<0>(win_config)); INEKernel::configure(std::get<1>(win_config)); } Status NELocallyConnectedMatrixMultiplyKernel::validate(const ITensorInfo *input0, const ITensorInfo *input1, const ITensorInfo *output) { ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input0, input1, output)); ARM_COMPUTE_RETURN_ON_ERROR(std::get<0>(validate_and_configure_window(input0->clone().get(), input1->clone().get(), output->clone().get()))); return Status{}; } void NELocallyConnectedMatrixMultiplyKernel::run(const Window &window, const ThreadInfo &info) { ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window); switch(_input0->info()->data_type()) { case DataType::F16: { vector_matrix_multiply_f16(_input0, _input1, _output, window, info); break; } case DataType::F32: { vector_matrix_multiply_f32(_input0, _input1, _output, window, info); break; } default: { ARM_COMPUTE_ERROR("Data type not supported"); break; } } } } // namespace arm_compute