/* * Copyright (c) 2017-2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/NEON/kernels/NEL2NormalizeLayerKernel.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/ITensor.h" #include "arm_compute/core/NEON/NEMath.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/Utils.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/Window.h" #include "arm_compute/core/NEON/wrapper/wrapper.h" #include #include namespace arm_compute { namespace { constexpr int max_input_tensor_dim = 3; template void l2_normalize_X(const ITensor *in, const ITensor *sum, ITensor *out, float epsilon, const Window &window) { /** NEON vector tag type. */ using ExactTagType = typename wrapper::traits::neon_vector::tag_type; Window window_sum(window); window_sum.set(Window::DimX, Window::Dimension(0, 0, 0)); Window in_slice = window.first_slice_window_1D(); Window sum_slice = window_sum.first_slice_window_1D(); do { Iterator input_it(in, in_slice); Iterator sum_it(sum, sum_slice); Iterator output_it(out, in_slice); const auto sum_value = *reinterpret_cast(sum_it.ptr()); const auto vec_normalize_value = wrapper::vdup_n(static_cast(1.f / std::sqrt(std::max(sum_value, static_cast(epsilon)))), ExactTagType{}); execute_window_loop(in_slice, [&](const Coordinates &) { const auto in_ptr = reinterpret_cast(input_it.ptr()); const auto out_ptr = reinterpret_cast(output_it.ptr()); wrapper::vstore(out_ptr, wrapper::vmul(wrapper::vloadq(in_ptr), vec_normalize_value)); }, input_it, output_it); } while(window.slide_window_slice_1D(in_slice) && window.slide_window_slice_1D(sum_slice)); } template void l2_normalize_Y(const ITensor *in, const ITensor *sum, ITensor *out, float epsilon, const Window &window) { /** NEON vector tag type. */ using ExactTagType = typename wrapper::traits::neon_vector::tag_type; Window window_sum(window); window_sum.set(Window::DimY, Window::Dimension(0, 0, 0)); Window in_slice = window.first_slice_window_2D(); Window sum_slice = window_sum.first_slice_window_2D(); do { Iterator input_it(in, in_slice); Iterator sum_it(sum, sum_slice); Iterator output_it(out, in_slice); auto eps = wrapper::vdup_n(static_cast(epsilon), ExactTagType{}); execute_window_loop(in_slice, [&](const Coordinates &) { const auto in_ptr = reinterpret_cast(input_it.ptr()); const auto sum_ptr = reinterpret_cast(sum_it.ptr()); const auto out_ptr = reinterpret_cast(output_it.ptr()); const auto vec_normalize_value = wrapper::vinvsqrt(wrapper::vmax(wrapper::vloadq(sum_ptr), eps)); wrapper::vstore(out_ptr, wrapper::vmul(wrapper::vloadq(in_ptr), vec_normalize_value)); }, input_it, sum_it, output_it); } while(window.slide_window_slice_2D(in_slice) && window.slide_window_slice_2D(sum_slice)); } template void l2_normalize_Z(const ITensor *in, const ITensor *sum, ITensor *out, float epsilon, const Window &window) { /** NEON vector tag type. */ using ExactTagType = typename wrapper::traits::neon_vector::tag_type; Window window_sum(window); window_sum.set(Window::DimZ, Window::Dimension(0, 0, 0)); Window in_slice = window.first_slice_window_3D(); Window sum_slice = window_sum.first_slice_window_3D(); do { Iterator input_it(in, in_slice); Iterator sum_it(sum, sum_slice); Iterator output_it(out, in_slice); auto eps = wrapper::vdup_n(static_cast(epsilon), ExactTagType{}); execute_window_loop(in_slice, [&](const Coordinates &) { const auto in_ptr = reinterpret_cast(input_it.ptr()); const auto sum_ptr = reinterpret_cast(sum_it.ptr()); const auto out_ptr = reinterpret_cast(output_it.ptr()); const auto vec_normalize_value = wrapper::vinvsqrt(wrapper::vmax(wrapper::vloadq(sum_ptr), eps)); wrapper::vstore(out_ptr, wrapper::vmul(wrapper::vloadq(in_ptr), vec_normalize_value)); }, input_it, sum_it, output_it); } while(window.slide_window_slice_3D(in_slice) && window.slide_window_slice_3D(sum_slice)); } Status validate_arguments(const ITensorInfo *input, const ITensorInfo *sum, const ITensorInfo *output, int axis, float epsilon) { ARM_COMPUTE_UNUSED(epsilon); const uint32_t actual_axis = wrap_around(axis, max_input_tensor_dim); ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, sum, output); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, sum); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F16, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON_MSG(actual_axis > 2, "Actual axis greater than 2 is not supported"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(actual_axis >= TensorShape::num_max_dimensions, "Actual normalization axis greater than max number of dimensions"); // Reduce shape on axis TensorShape sum_shape = input->tensor_shape(); sum_shape.set(actual_axis, 1); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(sum->tensor_shape(), sum_shape); if(output->total_size() != 0) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input, output); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(input->tensor_shape(), output->tensor_shape()); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(input, output); } return Status{}; } std::tuple validate_and_configure_window(ITensorInfo *input, ITensorInfo *sum, ITensorInfo *output, int axis) { const uint32_t actual_axis = wrap_around(axis, max_input_tensor_dim); const unsigned int num_elems_processed_per_iteration = 16 / data_size_from_type(input->data_type()); const unsigned int num_elems_processed_per_iteration_sum = (actual_axis == 0) ? 1 : num_elems_processed_per_iteration; Window win = calculate_max_window(*input, Steps(num_elems_processed_per_iteration)); // Output auto initialization if not yet initialized auto_init_if_empty(*output, input->tensor_shape(), 1, input->data_type()); AccessWindowHorizontal input_access(input, 0, num_elems_processed_per_iteration); AccessWindowHorizontal sum_access(sum, 0, num_elems_processed_per_iteration_sum); AccessWindowHorizontal output_access(output, 0, num_elems_processed_per_iteration); bool window_changed = update_window_and_padding(win, input_access, sum_access, output_access); output_access.set_valid_region(win, input->valid_region()); Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{}; return std::make_tuple(err, win); } } // namespace NEL2NormalizeLayerKernel::NEL2NormalizeLayerKernel() : _input(nullptr), _sum(nullptr), _output(nullptr), _actual_axis(0), _epsilon(1e-12) { } void NEL2NormalizeLayerKernel::configure(const ITensor *input, const ITensor *sum, ITensor *output, int axis, float epsilon) { ARM_COMPUTE_ERROR_ON_NULLPTR(input, sum, output); ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), sum->info(), output->info(), axis, epsilon)); _input = input; _sum = sum; _output = output; _actual_axis = wrap_around(axis, max_input_tensor_dim); _epsilon = epsilon; // Configure kernel window auto win_config = validate_and_configure_window(_input->info(), _sum->info(), _output->info(), axis); ARM_COMPUTE_ERROR_THROW_ON(std::get<0>(win_config)); INEKernel::configure(std::get<1>(win_config)); } Status NEL2NormalizeLayerKernel::validate(const ITensorInfo *input, const ITensorInfo *sum, const ITensorInfo *output, int axis, float epsilon) { ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, sum, output, axis, epsilon)); ARM_COMPUTE_RETURN_ON_ERROR(std::get<0>(validate_and_configure_window(input->clone().get(), sum->clone().get(), output->clone().get(), axis))); return Status{}; } void NEL2NormalizeLayerKernel::run(const Window &window, const ThreadInfo &info) { ARM_COMPUTE_UNUSED(info); ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window); switch(_actual_axis) { case 0: switch(_input->info()->data_type()) { case DataType::F32: l2_normalize_X(_input, _sum, _output, _epsilon, window); break; #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC case DataType::F16: l2_normalize_X(_input, _sum, _output, _epsilon, window); break; #endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC default: ARM_COMPUTE_ERROR("Not implemented"); } break; case 1: switch(_input->info()->data_type()) { case DataType::F32: l2_normalize_Y(_input, _sum, _output, _epsilon, window); break; #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC case DataType::F16: l2_normalize_Y(_input, _sum, _output, _epsilon, window); #endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC break; default: ARM_COMPUTE_ERROR("Not implemented"); } break; case 2: switch(_input->info()->data_type()) { case DataType::F32: l2_normalize_Z(_input, _sum, _output, _epsilon, window); break; #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC case DataType::F16: l2_normalize_Z(_input, _sum, _output, _epsilon, window); break; #endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC default: ARM_COMPUTE_ERROR("Not implemented"); } break; default: ARM_COMPUTE_ERROR("Unsupported normalization axis"); } } } // namespace arm_compute