/* * Copyright (c) 2019 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/NEON/kernels/NEInstanceNormalizationLayerKernel.h" #include "arm_compute/core/CPP/Validate.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/ITensor.h" #include "arm_compute/core/NEON/NEMath.h" #include "arm_compute/core/NEON/wrapper/wrapper.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/Utils.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/Window.h" #include namespace arm_compute { namespace { template void instance_normalization_nchw(ITensor *input, ITensor *output, float gamma, float beta, float epsilon, const Window &window) { /** NEON vector tag type. */ using ExactTagType = typename wrapper::traits::neon_bitvector_tag_t; // Clear X/Y dimensions on execution window as we handle the planes manually Window win = window; win.set(Window::DimX, Window::Dimension(0, 1, 1)); win.set(Window::DimY, Window::Dimension(0, 1, 1)); constexpr int window_step_x = 16 / sizeof(T); const unsigned int elements_plane = input->info()->dimension(0) * output->info()->dimension(1); Iterator input_it(input, win); execute_window_loop(win, [&](const Coordinates & id) { Window win_plane = window; win_plane.set(Window::DimX, Window::Dimension(0, 1, 1)); win_plane.set(Window::DimZ, Window::Dimension(id[2], id[2] + 1, 1)); win_plane.set(3, Window::Dimension(id[3], id[3] + 1, 1)); Iterator input_plane_it(input, win_plane); Iterator output_plane_it(output, win_plane); auto sum_h_w = static_cast(0.f); auto sum_squares_h_w = static_cast(0.f); execute_window_loop(win_plane, [&](const Coordinates &) { const auto input_ptr = reinterpret_cast(input_plane_it.ptr()); auto vec_sum_h_w = wrapper::vdup_n(static_cast(0.f), ExactTagType{}); auto vec_sum_squares_h_w = wrapper::vdup_n(static_cast(0.f), ExactTagType{}); // Compute S elements per iteration int x = window.x().start(); for(; x <= (window.x().end() - window_step_x); x += window_step_x) { auto vec_input_val = wrapper::vloadq(input_ptr + x); vec_sum_h_w = wrapper::vadd(vec_sum_h_w, vec_input_val); vec_sum_squares_h_w = wrapper::vadd(vec_sum_squares_h_w, wrapper::vmul(vec_input_val, vec_input_val)); } auto vec2_sum_h_w = wrapper::vpadd(wrapper::vgethigh(vec_sum_h_w), wrapper::vgetlow(vec_sum_h_w)); auto vec2_sum_squares_h_w = wrapper::vpadd(wrapper::vgethigh(vec_sum_squares_h_w), wrapper::vgetlow(vec_sum_squares_h_w)); for(int i = 0; i < window_step_x / 4; ++i) { vec2_sum_h_w = wrapper::vpadd(vec2_sum_h_w, vec2_sum_h_w); vec2_sum_squares_h_w = wrapper::vpadd(vec2_sum_squares_h_w, vec2_sum_squares_h_w); } sum_h_w += wrapper::vgetlane(vec2_sum_h_w, 0); sum_squares_h_w += wrapper::vgetlane(vec2_sum_squares_h_w, 0); // Compute left-over elements for(; x < window.x().end(); ++x) { const auto value = *(input_ptr + x); sum_h_w += value; sum_squares_h_w += value * value; } }, input_plane_it, output_plane_it); const auto mean_h_w = sum_h_w / elements_plane; const auto var_h_w = sum_squares_h_w / elements_plane - mean_h_w * mean_h_w; const auto multip_h_w = gamma / std::sqrt(var_h_w + epsilon); const auto vec_mean_h_w = wrapper::vdup_n(static_cast(mean_h_w), ExactTagType{}); const auto vec_multip_h_w = wrapper::vdup_n(static_cast(multip_h_w), ExactTagType{}); const auto vec_beta = wrapper::vdup_n(static_cast(beta), ExactTagType{}); execute_window_loop(win_plane, [&](const Coordinates &) { auto input_ptr = reinterpret_cast(input_plane_it.ptr()); auto output_ptr = reinterpret_cast(output_plane_it.ptr()); // Compute S elements per iteration int x = window.x().start(); auto vec_val = wrapper::vdup_n(static_cast(0.0f), ExactTagType{}); for(; x <= (window.x().end() - window_step_x); x += window_step_x) { vec_val = wrapper::vloadq(input_ptr + x); vec_val = wrapper::vadd(wrapper::vmul(wrapper::vsub(vec_val, vec_mean_h_w), vec_multip_h_w), vec_beta); wrapper::vstore(output_ptr + x, vec_val); } // Compute left-over elements for(; x < window.x().end(); ++x) { *(output_ptr + x) = ((*(input_ptr + x)) - mean_h_w) * multip_h_w + beta; } }, input_plane_it, output_plane_it); }, input_it); } Status validate_arguments(const ITensorInfo *input, const ITensorInfo *output, float gamma, float beta, float epsilon) { ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input); ARM_COMPUTE_UNUSED(gamma); ARM_COMPUTE_UNUSED(beta); ARM_COMPUTE_RETURN_ERROR_ON_MSG(epsilon == 0.f, "Epsilon must be different than 0"); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_NOT_IN(input, DataType::F16, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON_MSG(input->data_layout() == DataLayout::NHWC, "NHWC data layout is not supported by the kernel directly"); if(output != nullptr && output->total_size() != 0) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input, output); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(input, output); ARM_COMPUTE_RETURN_ERROR_ON_MSG(input->num_channels() != output->num_channels(), "Input and output have different number of channels"); } return Status{}; } std::tuple validate_and_configure_window(ITensorInfo *input, ITensorInfo *output) { // We handle the planes manually Window win = calculate_max_window(*input, Steps(1)); // Output auto initialization if not yet initialized auto_init_if_empty(*output, input->tensor_shape(), 1, input->data_type()); // NEInstanceNormalizationLayerKernel doesn't need padding so update_window_and_padding() can be skipped Coordinates coord; coord.set_num_dimensions(output->num_dimensions()); output->set_valid_region(ValidRegion(coord, output->tensor_shape())); return std::make_pair(Status{}, win); } } // namespace NEInstanceNormalizationLayerKernel::NEInstanceNormalizationLayerKernel() : _func(nullptr), _input(nullptr), _output(nullptr), _gamma(1), _beta(0), _epsilon(1e-12) { } void NEInstanceNormalizationLayerKernel::configure(ITensor *input, ITensor *output, float gamma, float beta, float epsilon) { ARM_COMPUTE_ERROR_ON_NULLPTR(input); _input = input; _output = output == nullptr ? input : output; _gamma = gamma; _beta = beta; _epsilon = epsilon; ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(_input->info(), _output->info(), gamma, beta, epsilon)); if(_input->info()->data_type() == DataType::F32) { _func = &instance_normalization_nchw; } #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC else if(_input->info()->data_type() == DataType::F16) { _func = &instance_normalization_nchw; } #endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC else { ARM_COMPUTE_ERROR("Unsupported data type"); } // Configure kernel window auto win_config = validate_and_configure_window(_input->info(), _output->info()); ARM_COMPUTE_ERROR_THROW_ON(std::get<0>(win_config)); INEKernel::configure(std::get<1>(win_config)); } Status NEInstanceNormalizationLayerKernel::validate(const ITensorInfo *input, const ITensorInfo *output, float gamma, float beta, float epsilon) { ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, output, gamma, beta, epsilon)); ARM_COMPUTE_RETURN_ON_ERROR(std::get<0>(validate_and_configure_window(input->clone().get(), (output == nullptr ? input->clone().get() : output->clone().get())))); return Status{}; } void NEInstanceNormalizationLayerKernel::run(const Window &window, const ThreadInfo &info) { ARM_COMPUTE_UNUSED(info); ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window); (*_func)(_input, _output, _gamma, _beta, _epsilon, window); } } // namespace arm_compute