/* * Copyright (c) 2017-2018 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/NEON/kernels/NEIm2ColKernel.h" #include "arm_compute/core/CPP/Validate.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/ITensor.h" #include "arm_compute/core/Size2D.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/Types.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/utils/misc/ShapeCalculator.h" #include #include #include #include #include using namespace arm_compute; using namespace misc::shape_calculator; namespace { Status validate_arguments(const ITensorInfo *input, const ITensorInfo *output, const Size2D &kernel_dims, const PadStrideInfo &conv_info, bool has_bias, const Size2D &dilation, unsigned int num_groups) { ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::F16, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON(input->data_type() == DataType::QASYMM8 && has_bias); ARM_COMPUTE_RETURN_ERROR_ON((dilation.x() < 1) || (dilation.y() < 1)); ARM_COMPUTE_RETURN_ERROR_ON_MSG(num_groups > 1, "Number of groups greater than one are not supported on NEON"); if(output->total_size() > 0) { TensorInfo expected_output = output->clone()->set_tensor_shape(compute_im2col_conv_shape(input, kernel_dims, conv_info, has_bias, dilation, false)); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(&expected_output, output); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output); } return Status{}; } std::pair validate_and_configure_window(ITensorInfo *input, ITensorInfo *output, const Size2D &kernel_dims, const PadStrideInfo &conv_info, bool has_bias, const Size2D &dilation) { const unsigned int width_idx = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::WIDTH); const unsigned int height_idx = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::HEIGHT); const unsigned int channel_idx = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::CHANNEL); std::pair convolved_dims = scaled_dimensions(input->dimension(width_idx), input->dimension(height_idx), kernel_dims.width, kernel_dims.height, conv_info, dilation); // Output tensor auto initialization if not yet initialized auto_init_if_empty(*output, input->clone()->set_tensor_shape(compute_im2col_conv_shape(input, kernel_dims, conv_info, has_bias, dilation, false))); Window win = calculate_max_window(*input, Steps()); win.set(width_idx, Window::Dimension(0, convolved_dims.first, 1)); win.set(height_idx, Window::Dimension(0, convolved_dims.second, 1)); win.set(channel_idx, Window::Dimension(0, 1, 1)); // The NEIm2ColKernel doesn't need padding so update_window_and_padding() can be skipped output->set_valid_region(ValidRegion(Coordinates(), output->tensor_shape())); return std::make_pair(Status{}, win); } template inline void linearize_volume_nchw(const uint8_t *const in_ptr, T *out_ptr, bool has_bias, int top_left_x, int top_left_y, int kernel_width, int kernel_height, int kernel_depth, int input_w, int input_h, int input_stride_x, int input_stride_y, int input_stride_z, int pad_value, int dilation_x, int dilation_y) { const int kernel_size2 = kernel_width * kernel_height; const int x_e = top_left_x + kernel_width * dilation_x; const int y_e = top_left_y + kernel_height * dilation_y; // Linearize volume int d = 0; // This for loop linearize a volume with 3 slices. This allows: // 1) to reduce the iterations of the outer for loop "d" // 2) to have an optimized im2col for the first convolution layer where usually we have 3 IFMs for(; d <= (kernel_depth - 3); d += 3) { for(int y = top_left_y; y < y_e; y += dilation_y) { if((y < 0 || y >= input_h) && has_pads) { // All the values will be the offset (will be zeros when not quantized) for(int x = top_left_x; x < x_e; x += dilation_x, ++out_ptr) { *(out_ptr + 0 * kernel_size2) = pad_value; *(out_ptr + 1 * kernel_size2) = pad_value; *(out_ptr + 2 * kernel_size2) = pad_value; } } else { for(int x = top_left_x; x < x_e; x += dilation_x, ++out_ptr) { if((x < 0 || x >= input_w) && has_pads) { *(out_ptr + 0 * kernel_size2) = pad_value; *(out_ptr + 1 * kernel_size2) = pad_value; *(out_ptr + 2 * kernel_size2) = pad_value; } else { *(out_ptr + 0 * kernel_size2) = *(reinterpret_cast(in_ptr + ((d + 0) * input_stride_z + y * input_stride_y + x * input_stride_x))); *(out_ptr + 1 * kernel_size2) = *(reinterpret_cast(in_ptr + ((d + 1) * input_stride_z + y * input_stride_y + x * input_stride_x))); *(out_ptr + 2 * kernel_size2) = *(reinterpret_cast(in_ptr + ((d + 2) * input_stride_z + y * input_stride_y + x * input_stride_x))); } } } } out_ptr += 2 * kernel_size2; } // Left over for(; d < kernel_depth; d++) { for(int y = top_left_y; y < y_e; y += dilation_y) { if((y < 0 || y >= input_h) && has_pads) { // All the values will be the offset (will be zeros when not quantized) memset(out_ptr, pad_value, kernel_width * sizeof(T)); out_ptr += kernel_width; } else { for(int x = top_left_x; x < x_e; x += dilation_x, ++out_ptr) { if((x < 0 || x >= input_w) && has_pads) { *out_ptr = pad_value; } else { *out_ptr = *(reinterpret_cast(in_ptr + (d * input_stride_z + y * input_stride_y + x * input_stride_x))); } } } } } // Append 1 if the convolution layer has biases if(has_bias) { *out_ptr = static_cast(1); } } template inline void linearize_volume_nhwc(const uint8_t *const in_ptr, T *out_ptr, bool has_bias, int start_x, int start_y, int kernel_width, int kernel_height, int input_w, int input_h, int input_c, int input_stride_y, int input_stride_z, int pad_value, int dilation_x, int dilation_y) { const int end_x = start_x + kernel_width * dilation_x; const int end_y = start_y + kernel_height * dilation_y; const int pad_quant = kernel_width * input_c; for(int y = start_y; y < end_y; y += dilation_y) { if(y < 0 || y >= input_h) { memset(out_ptr, pad_value, pad_quant * sizeof(T)); out_ptr += pad_quant; } else { for(int x = start_x; x < end_x; x += dilation_x) { if(x < 0 || x >= input_w) { memset(out_ptr, pad_value, input_c * sizeof(T)); out_ptr += input_c; } else { memcpy(out_ptr, reinterpret_cast(in_ptr + (y * input_stride_z + x * input_stride_y)), input_c * sizeof(T)); out_ptr += input_c; } } } } // Append 1 if the convolution layer has biases if(has_bias) { *out_ptr = static_cast(1); } } } // namespace template void NEIm2ColKernel::run_im2col(const Window &window) { ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window); const DataLayout data_layout = _input->info()->data_layout(); const unsigned int width_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH); const unsigned int height_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT); const unsigned int channel_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL); const int input_w = _input->info()->dimension(width_idx); const int input_h = _input->info()->dimension(height_idx); const int input_c = _input->info()->dimension(channel_idx); const int input_stride_x = _input->info()->strides_in_bytes().x(); const int input_stride_y = _input->info()->strides_in_bytes().y(); const int input_stride_z = _input->info()->strides_in_bytes().z(); const int pad_left = _conv_info.pad_left(); const int pad_top = _conv_info.pad_top(); const int stride_x = _conv_info.stride().first; const int stride_y = _conv_info.stride().second; const int pad_value = is_data_type_quantized(_input->info()->data_type()) ? _input->info()->quantization_info().offset : 0; Window window_in_out(window); // The first three dimensions of the input and output are increased by the inner loops window_in_out.set(Window::DimX, Window::Dimension(0, 0, 0)); window_in_out.set(Window::DimY, Window::Dimension(0, 0, 0)); window_in_out.set(Window::DimZ, Window::Dimension(0, 0, 0)); // Create iterators Iterator in(_input, window_in_out); Iterator out(_output, window_in_out); execute_window_loop(window, [&](const Coordinates & id) { const int start_w = id[width_idx] * stride_x - pad_left; const int start_h = id[height_idx] * stride_y - pad_top; // Get pointers const uint8_t *const input_ptr = in.ptr(); auto output_ptr = reinterpret_cast(out.ptr() + (id[width_idx] + id[height_idx] * _convolved_dims.first) * _output->info()->strides_in_bytes().y()); // Linearize volume if(is_nchw) { linearize_volume_nchw(input_ptr, output_ptr, _has_bias, start_w, start_h, _kernel_width, _kernel_height, input_c, input_w, input_h, input_stride_x, input_stride_y, input_stride_z, pad_value, _dilation.x(), _dilation.y()); } else { linearize_volume_nhwc(input_ptr, output_ptr, _has_bias, start_w, start_h, _kernel_width, _kernel_height, input_w, input_h, input_c, input_stride_y, input_stride_z, pad_value, _dilation.x(), _dilation.y()); } }, in, out); } NEIm2ColKernel::NEIm2ColKernel() : _func(), _input(nullptr), _output(nullptr), _convolved_dims(), _conv_info(), _kernel_width(0), _kernel_height(0), _has_bias(false), _dilation(1U, 1U) { } void NEIm2ColKernel::configure(const ITensor *input, ITensor *output, const Size2D &kernel_dims, const PadStrideInfo &conv_info, bool has_bias, const Size2D &dilation, unsigned int num_groups) { ARM_COMPUTE_ERROR_ON_NULLPTR(input, output); ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), output->info(), kernel_dims, conv_info, has_bias, dilation, num_groups)); ARM_COMPUTE_UNUSED(num_groups); const DataLayout data_layout = input->info()->data_layout(); const unsigned int width_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH); const unsigned int height_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT); _input = input; _output = output; _conv_info = conv_info; _kernel_width = kernel_dims.width; _kernel_height = kernel_dims.height; _dilation = dilation; _convolved_dims = scaled_dimensions(input->info()->dimension(width_idx), input->info()->dimension(height_idx), _kernel_width, _kernel_height, _conv_info, _dilation); _has_bias = has_bias; if(data_layout == DataLayout::NCHW) { switch(_input->info()->data_type()) { case DataType::F32: _func = (!conv_info.has_padding()) ? &NEIm2ColKernel::run_im2col : &NEIm2ColKernel::run_im2col; break; #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC case DataType::F16: _func = (!conv_info.has_padding()) ? &NEIm2ColKernel::run_im2col : &NEIm2ColKernel::run_im2col; break; #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */ case DataType::QASYMM8: _func = (!conv_info.has_padding()) ? &NEIm2ColKernel::run_im2col : &NEIm2ColKernel::run_im2col; break; default: ARM_COMPUTE_ERROR("Data type not supported"); break; } } else { switch(_input->info()->data_type()) { case DataType::F32: _func = (!conv_info.has_padding()) ? &NEIm2ColKernel::run_im2col : &NEIm2ColKernel::run_im2col; break; #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC case DataType::F16: _func = (!conv_info.has_padding()) ? &NEIm2ColKernel::run_im2col : &NEIm2ColKernel::run_im2col; break; #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */ case DataType::QASYMM8: _func = (!conv_info.has_padding()) ? &NEIm2ColKernel::run_im2col : &NEIm2ColKernel::run_im2col; break; default: ARM_COMPUTE_ERROR("Data type not supported"); break; } } // Configure kernel window auto win_config = validate_and_configure_window(input->info(), output->info(), kernel_dims, conv_info, has_bias, dilation); ARM_COMPUTE_ERROR_THROW_ON(win_config.first); INEKernel::configure(win_config.second); } Status NEIm2ColKernel::validate(const ITensorInfo *input, const ITensorInfo *output, const Size2D &kernel_dims, const PadStrideInfo &conv_info, bool has_bias, const Size2D &dilation, unsigned int num_groups) { ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, output, kernel_dims, conv_info, has_bias, dilation, num_groups)); ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input->clone().get(), output->clone().get(), kernel_dims, conv_info, has_bias, dilation).first); return Status{}; } void NEIm2ColKernel::run(const Window &window, const ThreadInfo &info) { ARM_COMPUTE_UNUSED(info); ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window); (this->*_func)(window); }