/* * Copyright (c) 2017-2018 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/NEON/kernels/NEIm2ColKernel.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/FixedPoint.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/ITensor.h" #include "arm_compute/core/Size2D.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/Types.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/utils/misc/ShapeCalculator.h" #include #include #include #include #include using namespace arm_compute; namespace { Status validate_arguments(const ITensorInfo *input, const ITensorInfo *output, const Size2D &kernel_dims, const PadStrideInfo &conv_info, bool has_bias, bool is_fully_connected, bool is_flatten, const Size2D &dilation) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QS8, DataType::QASYMM8, DataType::QS16, DataType::F16, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_FIXED_POINT_POSITION(input, output); ARM_COMPUTE_RETURN_ERROR_ON(input->data_type() == DataType::QASYMM8 && has_bias); ARM_COMPUTE_RETURN_ERROR_ON((dilation.x() < 1) || (dilation.y() < 1)); TensorShape expected_output_shape; if(is_flatten) /* Called by FlattenLayer */ { expected_output_shape = misc::shape_calculator::compute_im2col_flatten_shape(input); } else if(!is_fully_connected) /* Called by ConvolutionLayer */ { expected_output_shape = misc::shape_calculator::compute_im2col_conv_shape(input, kernel_dims, conv_info, has_bias, dilation); } else /* Called by FullyConnectedLayer */ { const int num_batch_dimensions = std::max(0, static_cast(output->tensor_shape().num_dimensions()) - 1); const int num_input_dimensions = input->tensor_shape().num_dimensions() - num_batch_dimensions; expected_output_shape = misc::shape_calculator::compute_im2col_fc_shape(input, num_input_dimensions); } TensorInfo expected_output = output->clone()->set_tensor_shape(expected_output_shape); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(&expected_output, output); return Status{}; } template inline void linearize_volume(const uint8_t *const in_ptr, T *out_ptr, bool has_bias, int top_left_x, int top_left_y, int kernel_width, int kernel_height, int kernel_depth, int input_w, int input_h, int input_stride_x, int input_stride_y, int input_stride_z, int fixed_point_position, int pad_value, int dilation_x, int dilation_y) { const int kernel_size2 = kernel_width * kernel_height; const int x_e = top_left_x + kernel_width * dilation_x; const int y_e = top_left_y + kernel_height * dilation_y; // Linearize volume int d = 0; // This for loop linearize a volume with 3 slices. This allows: // 1) to reduce the iterations of the outer for loop "d" // 2) to have an optimized im2col for the first convolution layer where usually we have 3 IFMs for(; d <= (kernel_depth - 3); d += 3) { for(int y = top_left_y; y < y_e; y += dilation_y) { if((y < 0 || y >= input_h) && has_pads) { // All the values will be the offset (will be zeros when not quantized) for(int x = top_left_x; x < x_e; x += dilation_x, ++out_ptr) { *(out_ptr + 0 * kernel_size2) = pad_value; *(out_ptr + 1 * kernel_size2) = pad_value; *(out_ptr + 2 * kernel_size2) = pad_value; } } else { for(int x = top_left_x; x < x_e; x += dilation_x, ++out_ptr) { if((x < 0 || x >= input_w) && has_pads) { *(out_ptr + 0 * kernel_size2) = pad_value; *(out_ptr + 1 * kernel_size2) = pad_value; *(out_ptr + 2 * kernel_size2) = pad_value; } else { *(out_ptr + 0 * kernel_size2) = *(reinterpret_cast(in_ptr + ((d + 0) * input_stride_z + y * input_stride_y + x * input_stride_x))); *(out_ptr + 1 * kernel_size2) = *(reinterpret_cast(in_ptr + ((d + 1) * input_stride_z + y * input_stride_y + x * input_stride_x))); *(out_ptr + 2 * kernel_size2) = *(reinterpret_cast(in_ptr + ((d + 2) * input_stride_z + y * input_stride_y + x * input_stride_x))); } } } } out_ptr += 2 * kernel_size2; } // Left over for(; d < kernel_depth; d++) { for(int y = top_left_y; y < y_e; y += dilation_y) { if((y < 0 || y >= input_h) && has_pads) { // All the values will be the offset (will be zeros when not quantized) memset(out_ptr, pad_value, kernel_width * sizeof(T)); out_ptr += kernel_width; } else { for(int x = top_left_x; x < x_e; x += dilation_x, ++out_ptr) { if((x < 0 || x >= input_w) && has_pads) { *out_ptr = pad_value; } else { *out_ptr = *(reinterpret_cast(in_ptr + (d * input_stride_z + y * input_stride_y + x * input_stride_x))); } } } } } // Append 1 if the convolution layer has biases if(has_bias) { if(std::is_same::value) { *out_ptr = sqcvt_qs8_f32(1.0f, fixed_point_position); } else if(std::is_same::value) { *out_ptr = sqcvt_qs16_f32(1.0f, fixed_point_position); } else { *out_ptr = static_cast(1); } } } } // namespace template void NEIm2ColKernel::run_generic(const Window &window) { ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window); const DataLayout data_layout = _input->info()->data_layout(); const unsigned int width_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH); const unsigned int height_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT); const unsigned int channel_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL); const int kernel_depth = _input->info()->dimension(channel_idx); const int input_w = _input->info()->dimension(width_idx); const int input_h = _input->info()->dimension(height_idx); const int input_stride_x = _input->info()->strides_in_bytes()[width_idx]; const int input_stride_y = _input->info()->strides_in_bytes()[height_idx]; const int input_stride_z = _input->info()->strides_in_bytes()[channel_idx]; const int offset = is_data_type_quantized(_input->info()->data_type()) ? _input->info()->quantization_info().offset : 0; int pad_left = 0; int pad_top = 0; int stride_x = 0; int stride_y = 0; pad_left = _conv_info.pad_left(); pad_top = _conv_info.pad_top(); std::tie(stride_x, stride_y) = _conv_info.stride(); // Setup input window const int start_x = -pad_left; const int start_y = -pad_top; Window window_in_out(window); // The first three dimensions of the input and output are increased by the inner loops window_in_out.set(Window::DimX, Window::Dimension(0, 0, 0)); window_in_out.set(Window::DimY, Window::Dimension(0, 0, 0)); window_in_out.set(Window::DimZ, Window::Dimension(0, 0, 0)); // Create iterators Iterator in(_input, window_in_out); Iterator out(_output, window_in_out); execute_window_loop(window, [&](const Coordinates & id) { const int top_left_x = id[width_idx] * stride_x + start_x; const int top_left_y = id[height_idx] * stride_y + start_y; // Get pointers const uint8_t *const input_ptr = in.ptr(); auto output_ptr = reinterpret_cast(out.ptr() + (id[width_idx] + id[height_idx] * _convolved_dims.first) * _output->info()->strides_in_bytes().y()); // Linearize volume linearize_volume(input_ptr, output_ptr, _has_bias, top_left_x, top_left_y, static_cast(_kernel_width), static_cast(_kernel_height), kernel_depth, input_w, input_h, input_stride_x, input_stride_y, input_stride_z, _input->info()->fixed_point_position(), offset, _dilation.x(), _dilation.y()); }, in, out); } template void NEIm2ColKernel::run_reduced(const Window &window) { const size_t in_width = _input->info()->dimension(0); const size_t in_height = _input->info()->dimension(1); const size_t out_step_x = in_width * _input->info()->element_size(); const size_t out_step_y = out_step_x * in_height; const size_t out_width = _output->info()->dimension(0); Window in_window(window); in_window.set(Window::DimX, Window::Dimension(0, 1, 1)); Window out_window; out_window.use_tensor_dimensions(_output->info()->tensor_shape()); out_window.set(Window::DimX, Window::Dimension(out_window.x().start(), out_window.x().end(), in_width)); Window in_slice = in_window.first_slice_window_3D(); Window out_slice = out_window.first_slice_window_1D(); do { Iterator in(_input, in_slice); Iterator out(_output, out_slice); uint8_t *out_ptr = out.ptr(); execute_window_loop(in_slice, [&](const Coordinates & id) { memcpy(out_ptr + id.y() * out_step_x + id.z() * out_step_y, in.ptr(), out_step_x); }, in); // Add bias if(_has_bias) { if(std::is_same::value) { *(reinterpret_cast(out_ptr) + out_width - 1) = sqcvt_qs8_f32(1.0f, _input->info()->fixed_point_position()); } else if(std::is_same::value) { *(reinterpret_cast(out_ptr) + out_width - 1) = sqcvt_qs16_f32(1.0f, _input->info()->fixed_point_position()); } else { *(reinterpret_cast(out_ptr) + out_width - 1) = static_cast(1); } } } while(in_window.slide_window_slice_3D(in_slice) && out_window.slide_window_slice_1D(out_slice)); } NEIm2ColKernel::NEIm2ColKernel() : _func(), _input(nullptr), _output(nullptr), _convolved_dims(), _conv_info(), _kernel_width(0), _kernel_height(0), _has_bias(false), _dilation(1U, 1U) { } void NEIm2ColKernel::configure(const ITensor *input, ITensor *output, const Size2D &kernel_dims, const PadStrideInfo &conv_info, bool has_bias, bool is_fully_connected, bool is_flatten, const Size2D &dilation) { ARM_COMPUTE_ERROR_ON_NULLPTR(input, output); // Perform validation step ARM_COMPUTE_UNUSED(is_fully_connected, is_flatten); ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), output->info(), kernel_dims, conv_info, has_bias, is_fully_connected, is_flatten, dilation)); const DataLayout data_layout = input->info()->data_layout(); const unsigned int width_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH); const unsigned int height_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT); const unsigned int channel_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL); _input = input; _output = output; _conv_info = conv_info; _kernel_width = kernel_dims.width; _kernel_height = kernel_dims.height; _dilation = dilation; _convolved_dims = scaled_dimensions(input->info()->dimension(width_idx), input->info()->dimension(height_idx), _kernel_width, _kernel_height, _conv_info, _dilation); _has_bias = has_bias; unsigned int stride_x = 0; unsigned int stride_y = 0; std::tie(stride_x, stride_y) = conv_info.stride(); bool run_img2col_reduced = (output->info()->dimension(0) == (input->info()->dimension(0) * input->info()->dimension(1) * input->info()->dimension(2))) && (TensorShape::num_max_dimensions >= 4) && (std::equal(input->info()->tensor_shape().cbegin() + 3, input->info()->tensor_shape().cend(), output->info()->tensor_shape().cbegin() + 1)) && ((stride_x == 1) && (stride_y == 1) && !conv_info.has_padding()) && ((dilation.x() == 1) && (dilation.y() == 1)); Window window = calculate_max_window(*input->info(), Steps()); if(run_img2col_reduced) { switch(_input->info()->data_type()) { case DataType::F32: _func = &NEIm2ColKernel::run_reduced; break; #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC case DataType::F16: _func = &NEIm2ColKernel::run_reduced; break; #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */ case DataType::QS8: _func = &NEIm2ColKernel::run_reduced; break; case DataType::QS16: _func = &NEIm2ColKernel::run_reduced; break; case DataType::QASYMM8: _func = &NEIm2ColKernel::run_reduced; break; default: ARM_COMPUTE_ERROR("Data type not supported"); break; } } else { switch(_input->info()->data_type()) { case DataType::F32: _func = (!conv_info.has_padding()) ? &NEIm2ColKernel::run_generic : &NEIm2ColKernel::run_generic; break; #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC case DataType::F16: _func = (!conv_info.has_padding()) ? &NEIm2ColKernel::run_generic : &NEIm2ColKernel::run_generic; break; #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */ case DataType::QS8: _func = (!conv_info.has_padding()) ? &NEIm2ColKernel::run_generic : &NEIm2ColKernel::run_generic; break; case DataType::QS16: _func = (!conv_info.has_padding()) ? &NEIm2ColKernel::run_generic : &NEIm2ColKernel::run_generic; break; case DataType::QASYMM8: _func = (!conv_info.has_padding()) ? &NEIm2ColKernel::run_generic : &NEIm2ColKernel::run_generic; break; default: ARM_COMPUTE_ERROR("Data type not supported"); break; } window.set(width_idx, Window::Dimension(0, _convolved_dims.first, 1)); window.set(height_idx, Window::Dimension(0, _convolved_dims.second, 1)); window.set(channel_idx, Window::Dimension(0, 1, 1)); } // The NEIm2ColKernel doesn't need padding so update_window_and_padding() can be skipped output->info()->set_valid_region(ValidRegion(Coordinates(), output->info()->tensor_shape())); IKernel::configure(window); } Status NEIm2ColKernel::validate(const ITensorInfo *input, const ITensorInfo *output, const Size2D &kernel_dims, const PadStrideInfo &conv_info, bool has_bias, bool is_fully_connected, bool is_flatten, const Size2D &dilation) { ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, output, kernel_dims, conv_info, has_bias, is_fully_connected, is_flatten, dilation)); return Status{}; } void NEIm2ColKernel::run(const Window &window, const ThreadInfo &info) { ARM_COMPUTE_UNUSED(info); ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window); (this->*_func)(window); }