/* * Copyright (c) 2016-2021 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "src/core/NEON/kernels/NEGEMMTranspose1xWKernel.h" #include "arm_compute/core/ITensor.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/Window.h" #include "src/core/NEON/INEKernel.h" #include "src/core/helpers/AutoConfiguration.h" #include "src/core/helpers/WindowHelpers.h" #include namespace arm_compute { namespace { TensorShape get_output_shape(const ITensorInfo *input) { TensorShape output_shape{ input->tensor_shape() }; const size_t transpose_w = 16 / input->element_size(); output_shape.set(0, input->dimension(1) * transpose_w); output_shape.set(1, static_cast(std::ceil((input->dimension(0) / static_cast(transpose_w))))); return output_shape; } Status validate_arguments(const ITensorInfo *input, const ITensorInfo *output) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input); ARM_COMPUTE_RETURN_ERROR_ON(input->data_type() == DataType::UNKNOWN); //Note: ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input) is not needed here as this kernel doesn't use CPU FP16 instructions. if(output->total_size() != 0) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(output->tensor_shape(), get_output_shape(input)); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_QUANTIZATION_INFO(input, output); } return Status{}; } } // namespace void NEGEMMTranspose1xWKernel::configure(const ITensor *input, ITensor *output) { ARM_COMPUTE_ERROR_ON_NULLPTR(input, output); // Output tensor auto inizialitation if not yet initialized auto_init_if_empty(*output->info(), get_output_shape(input->info()), 1, input->info()->data_type()); // Perform validate step ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), output->info())); _input = input; _output = output; const size_t vector_size = 16 / input->info()->element_size(); // Configure kernel window Window win = calculate_max_window(*input->info(), Steps(vector_size)); INEKernel::configure(win); } Status NEGEMMTranspose1xWKernel::validate(const ITensorInfo *input, const ITensorInfo *output) { ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, output)); return Status{}; } void NEGEMMTranspose1xWKernel::run(const Window &window, const ThreadInfo &info) { ARM_COMPUTE_UNUSED(info); ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INESimpleKernel::window(), window); /* * Following an example of how the transposition1xW works when the input data type is F32 * * |a00 a01 a02 a03| * |a10 a11 a12 a13| * |a20 a21 a22 a23| = | a00 a01 a02 a03 || a10 a11 a12 a13 || a20 a21 a22 a23 || a30 a31 a32 a33 | * |a30 a31 a32 a33| * * The output matrix will have the following shape: [ height * W, ceil(width / W) ], where W = (16 / element size of the tensor) */ // Set window for output tensor. Set to 0 the X and Y dimensions in order to allow multi-threading implementation and future batched matrix multiplications Window win_out(window); win_out.set(Window::DimX, Window::Dimension(0, 0, 0)); win_out.set(Window::DimY, Window::Dimension(0, 0, 0)); Iterator in(_input, window); Iterator out(_output, win_out); const size_t in_width = _input->info()->dimension(0); const size_t element_size = _input->info()->element_size(); const size_t out_stride = _output->info()->strides_in_bytes()[1]; const size_t vector_size = 16 / element_size; execute_window_loop(window, [&](const Coordinates & id) { const uint8_t *in_ptr = in.ptr(); uint8_t *const out_ptr = out.ptr() + (id.y() * vector_size) * element_size + (id.x() / vector_size) * out_stride; for(size_t k = 0; k < vector_size; ++k) { // If the input width is not multiple of W, we fill the reference with 0s if((id.x() + k) >= in_width) { std::memset(out_ptr + k * element_size, 0, element_size); } else { std::memcpy(out_ptr + k * element_size, in_ptr + k * element_size, element_size); } } }, in, out); } } // namespace arm_compute