/* * Copyright (c) 2017-2020 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "src/core/NEON/kernels/NEGEMMMatrixMultiplyKernel.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/ITensor.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/Types.h" #include "arm_compute/core/Utils.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/Window.h" #include "arm_compute/core/utils/misc/ShapeCalculator.h" #include "src/core/AccessWindowStatic.h" #include "src/core/CPP/Validate.h" #include "src/core/NEON/NEFixedPoint.h" #include "src/core/helpers/AutoConfiguration.h" #include "src/core/helpers/WindowHelpers.h" #include "src/core/utils/helpers/float_ops.h" #include namespace arm_compute { namespace { #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC void vector_matrix_multiply_f16(const ITensor *input0, const ITensor *input1, ITensor *output, const Window &window, const ThreadInfo &info, float alpha) { const auto width_matrix_b = static_cast(output->info()->dimension(0)); const auto in_b_stride = static_cast(input1->info()->strides_in_bytes()[1] / input1->info()->element_size()); const auto num_elems_vec_a = static_cast(input0->info()->dimension(0)); // The implementation computes 32 elements per iteration const int window_start_x = 32 * info.thread_id; const int window_step_x = 32 * info.num_threads; const int window_end_x = ceil_to_multiple(width_matrix_b - window_start_x, window_step_x) + window_start_x; ARM_COMPUTE_ERROR_ON_MSG((window_end_x - window_start_x) % window_step_x, " (window_end_x - window_start_x) must be multiple of window_step_x"); Window win_out(window); win_out.set(Window::DimX, Window::Dimension(0, 1, 1)); win_out.set(Window::DimY, Window::Dimension(0, 1, 1)); Window win_a(window); win_a.set(Window::DimX, Window::Dimension(0, 0, 0)); win_a.set(Window::DimY, Window::Dimension(0, 0, 0)); Window win_b; // Don't slice matrix B along the z dimension if matrix B has just 2 dimensions and matrix A more than 2 // This scenario can happen when the the matrix multiplication is used to perform a convolution operation if(input1->info()->num_dimensions() >= 3) { win_b = window; } win_b.set(Window::DimX, Window::Dimension(0, 1, 1)); win_b.set(Window::DimY, Window::Dimension(0, 1, 1)); Iterator ina(input0, win_a); Iterator inb(input1, win_b); Iterator out(output, win_out); const bool multiply_alpha = !(helpers::float_ops::is_one(alpha)); const float16x8_t alpha_f16 = vdupq_n_f16(alpha); execute_window_loop(win_out, [&](const Coordinates &) { int x = window_start_x; // Here we don't check for x lower equal than (window_end_x - window_step_x) because of // window_end_x is computed above which may cause out-of-bound writes to the output. for(; x < (window_end_x - window_step_x); x += window_step_x) { if(x > width_matrix_b) { return; } auto matrix_b = reinterpret_cast(inb.ptr()) + x; float16x8_t acc0 = vdupq_n_f16(0.f); float16x8_t acc1 = vdupq_n_f16(0.f); float16x8_t acc2 = vdupq_n_f16(0.f); float16x8_t acc3 = vdupq_n_f16(0.f); auto vec_a = reinterpret_cast(ina.ptr()); const float16_t *vec_a_end_addr = vec_a + num_elems_vec_a; for(; vec_a <= (vec_a_end_addr - 4);) { const float16x4_t a0l = vld1_f16(vec_a); float16x8_t b00 = vld1q_f16(matrix_b + 0 + 0 * in_b_stride); float16x8_t b01 = vld1q_f16(matrix_b + 8 + 0 * in_b_stride); float16x8_t b02 = vld1q_f16(matrix_b + 16 + 0 * in_b_stride); float16x8_t b03 = vld1q_f16(matrix_b + 24 + 0 * in_b_stride); float16x8_t b10 = vld1q_f16(matrix_b + 0 + 1 * in_b_stride); float16x8_t b11 = vld1q_f16(matrix_b + 8 + 1 * in_b_stride); float16x8_t b12 = vld1q_f16(matrix_b + 16 + 1 * in_b_stride); float16x8_t b13 = vld1q_f16(matrix_b + 24 + 1 * in_b_stride); acc0 = vaddq_f16(acc0, vmulq_lane_f16(b00, a0l, 0)); acc1 = vaddq_f16(acc1, vmulq_lane_f16(b01, a0l, 0)); acc2 = vaddq_f16(acc2, vmulq_lane_f16(b02, a0l, 0)); acc3 = vaddq_f16(acc3, vmulq_lane_f16(b03, a0l, 0)); acc0 = vaddq_f16(acc0, vmulq_lane_f16(b10, a0l, 1)); acc1 = vaddq_f16(acc1, vmulq_lane_f16(b11, a0l, 1)); acc2 = vaddq_f16(acc2, vmulq_lane_f16(b12, a0l, 1)); acc3 = vaddq_f16(acc3, vmulq_lane_f16(b13, a0l, 1)); matrix_b += 2 * in_b_stride; b00 = vld1q_f16(matrix_b + 0 + 0 * in_b_stride); b01 = vld1q_f16(matrix_b + 8 + 0 * in_b_stride); b02 = vld1q_f16(matrix_b + 16 + 0 * in_b_stride); b03 = vld1q_f16(matrix_b + 24 + 0 * in_b_stride); b10 = vld1q_f16(matrix_b + 0 + 1 * in_b_stride); b11 = vld1q_f16(matrix_b + 8 + 1 * in_b_stride); b12 = vld1q_f16(matrix_b + 16 + 1 * in_b_stride); b13 = vld1q_f16(matrix_b + 24 + 1 * in_b_stride); acc0 = vaddq_f16(acc0, vmulq_lane_f16(b00, a0l, 2)); acc1 = vaddq_f16(acc1, vmulq_lane_f16(b01, a0l, 2)); acc2 = vaddq_f16(acc2, vmulq_lane_f16(b02, a0l, 2)); acc3 = vaddq_f16(acc3, vmulq_lane_f16(b03, a0l, 2)); acc0 = vaddq_f16(acc0, vmulq_lane_f16(b10, a0l, 3)); acc1 = vaddq_f16(acc1, vmulq_lane_f16(b11, a0l, 3)); acc2 = vaddq_f16(acc2, vmulq_lane_f16(b12, a0l, 3)); acc3 = vaddq_f16(acc3, vmulq_lane_f16(b13, a0l, 3)); vec_a += 4; matrix_b += 2 * in_b_stride; } for(; vec_a < vec_a_end_addr; ++vec_a) { const float16_t a0 = *vec_a; const float16x8_t b00 = vld1q_f16(matrix_b + 0 + 0 * in_b_stride); const float16x8_t b01 = vld1q_f16(matrix_b + 8 + 0 * in_b_stride); const float16x8_t b02 = vld1q_f16(matrix_b + 16 + 0 * in_b_stride); const float16x8_t b03 = vld1q_f16(matrix_b + 24 + 0 * in_b_stride); acc0 = vaddq_f16(acc0, vmulq_n_f16(b00, a0)); acc1 = vaddq_f16(acc1, vmulq_n_f16(b01, a0)); acc2 = vaddq_f16(acc2, vmulq_n_f16(b02, a0)); acc3 = vaddq_f16(acc3, vmulq_n_f16(b03, a0)); matrix_b += in_b_stride; } // Multiply by the weight of matrix product (alpha) if(multiply_alpha) { acc0 = vmulq_f16(acc0, alpha_f16); acc1 = vmulq_f16(acc1, alpha_f16); acc2 = vmulq_f16(acc2, alpha_f16); acc3 = vmulq_f16(acc3, alpha_f16); } auto vec_out = reinterpret_cast(out.ptr()) + x; vst1q_f16(vec_out + 0, acc0); vst1q_f16(vec_out + 8, acc1); vst1q_f16(vec_out + 16, acc2); vst1q_f16(vec_out + 24, acc3); } for(; x < window_end_x; ++x) { if(x > width_matrix_b) { return; } auto matrix_b = reinterpret_cast(inb.ptr()) + x; float16x4_t vacc = vdup_n_f16(0.f); auto vec_a = reinterpret_cast(ina.ptr()); const float16_t *vec_a_end_addr = vec_a + num_elems_vec_a; for(; vec_a <= (vec_a_end_addr - 4); vec_a += 4) { const float16x4_t a0l = vld1_f16(vec_a); const float16x4_t b_col = { *(matrix_b + 0 * in_b_stride), *(matrix_b + 1 * in_b_stride), *(matrix_b + 2 * in_b_stride), *(matrix_b + 3 * in_b_stride), }; vacc = vadd_f16(vacc, vmul_f16(a0l, b_col)); matrix_b += 4 * in_b_stride; } float16_t acc = vget_lane_f16(vacc, 0) + vget_lane_f16(vacc, 1) + vget_lane_f16(vacc, 2) + vget_lane_f16(vacc, 3); for(; vec_a < vec_a_end_addr; ++vec_a) { const float16_t a0 = *vec_a; const float16_t b00 = *matrix_b; acc += b00 * a0; matrix_b += in_b_stride; } // Multiply by the weight of matrix product (alpha) if(multiply_alpha) { acc *= static_cast(alpha); } auto vec_out = reinterpret_cast(out.ptr()) + x; *(vec_out) = acc; } }, ina, inb, out); } #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */ void vector_matrix_multiply_f32(const ITensor *input0, const ITensor *input1, ITensor *output, const Window &window, const ThreadInfo &info, float alpha) { const auto width_matrix_b = static_cast(output->info()->dimension(0)); const auto in_b_stride = static_cast(input1->info()->strides_in_bytes()[1] / data_size_from_type(input1->info()->data_type())); const auto num_elems_vec_a = static_cast(input0->info()->dimension(0)); // The implementation computes 16 elements per iteration const int window_start_x = 16 * info.thread_id; const int window_step_x = 16 * info.num_threads; // Make sure (window_end_x - window_start_x) is a multiple of window_step_x const int window_end_x = ceil_to_multiple(width_matrix_b - window_start_x, window_step_x) + window_start_x; Window win_out(window); win_out.set(Window::DimX, Window::Dimension(0, 1, 1)); win_out.set(Window::DimY, Window::Dimension(0, 1, 1)); Window win_a(window); win_a.set(Window::DimX, Window::Dimension(0, 0, 0)); win_a.set(Window::DimY, Window::Dimension(0, 0, 0)); Window win_b; // Don't slice matrix B along the z dimension if matrix B has just 2 dimensions and matrix A more than 2 // This scenario can happen when the the matrix multiplication is used to perform a convolution operation if(input1->info()->num_dimensions() >= 3) { win_b = window; } win_b.set(Window::DimX, Window::Dimension(0, 1, 1)); win_b.set(Window::DimY, Window::Dimension(0, 1, 1)); Iterator ina(input0, win_a); Iterator inb(input1, win_b); Iterator out(output, win_out); const bool multiply_alpha = !(helpers::float_ops::is_one(alpha)); const float32x4_t alpha_f32 = vdupq_n_f32(alpha); execute_window_loop(win_out, [&](const Coordinates &) { int x = window_start_x; // Here we don't check for x lower equal than (window_end_x - window_step_x) because of // window_end_x is computed above which may cause out-of-bound writes to the output. for(; x < (window_end_x - window_step_x); x += window_step_x) { if(x > width_matrix_b) { return; } float32x4_t acc0 = vdupq_n_f32(0.f); float32x4_t acc1 = vdupq_n_f32(0.f); float32x4_t acc2 = vdupq_n_f32(0.f); float32x4_t acc3 = vdupq_n_f32(0.f); auto vec_a = reinterpret_cast(ina.ptr()); auto matrix_b = reinterpret_cast(inb.ptr()) + x; #if __arm__ asm volatile("PLD [%0, #128*4]" ::"r"(reinterpret_cast(vec_a))); asm volatile("PLD [%0, #128*4]" ::"r"(reinterpret_cast(matrix_b))); asm volatile("PLD [%0, #128*4]" ::"r"(reinterpret_cast(matrix_b + in_b_stride))); #endif /* __arm__ */ auto vec_a_end_addr = vec_a + num_elems_vec_a; for(; vec_a <= (vec_a_end_addr - 4);) { float32x2_t a0l = vld1_f32(vec_a); float32x4_t b00 = vld1q_f32(matrix_b + 0 + 0 * in_b_stride); float32x4_t b01 = vld1q_f32(matrix_b + 4 + 0 * in_b_stride); float32x4_t b02 = vld1q_f32(matrix_b + 8 + 0 * in_b_stride); float32x4_t b03 = vld1q_f32(matrix_b + 12 + 0 * in_b_stride); float32x4_t b10 = vld1q_f32(matrix_b + 0 + 1 * in_b_stride); float32x4_t b11 = vld1q_f32(matrix_b + 4 + 1 * in_b_stride); float32x4_t b12 = vld1q_f32(matrix_b + 8 + 1 * in_b_stride); float32x4_t b13 = vld1q_f32(matrix_b + 12 + 1 * in_b_stride); #if __arm__ asm volatile("PLD [%0, #128*4]" ::"r"(reinterpret_cast(vec_a))); asm volatile("PLD [%0, #128*1]" ::"r"(reinterpret_cast(matrix_b + 1 * in_b_stride))); asm volatile("PLD [%0, #128*1]" ::"r"(reinterpret_cast(matrix_b + 2 * in_b_stride))); asm volatile("PLD [%0, #128*1]" ::"r"(reinterpret_cast(matrix_b + 3 * in_b_stride))); asm volatile("PLD [%0, #128*1]" ::"r"(reinterpret_cast(matrix_b + 4 * in_b_stride))); #endif /* __arm__ */ acc0 = vmlaq_lane_f32(acc0, b00, a0l, 0); acc1 = vmlaq_lane_f32(acc1, b01, a0l, 0); acc2 = vmlaq_lane_f32(acc2, b02, a0l, 0); acc3 = vmlaq_lane_f32(acc3, b03, a0l, 0); acc0 = vmlaq_lane_f32(acc0, b10, a0l, 1); acc1 = vmlaq_lane_f32(acc1, b11, a0l, 1); acc2 = vmlaq_lane_f32(acc2, b12, a0l, 1); acc3 = vmlaq_lane_f32(acc3, b13, a0l, 1); vec_a += 2; matrix_b += 2 * in_b_stride; a0l = vld1_f32(vec_a); b00 = vld1q_f32(matrix_b + 0 + 0 * in_b_stride); b01 = vld1q_f32(matrix_b + 4 + 0 * in_b_stride); b02 = vld1q_f32(matrix_b + 8 + 0 * in_b_stride); b03 = vld1q_f32(matrix_b + 12 + 0 * in_b_stride); b10 = vld1q_f32(matrix_b + 0 + 1 * in_b_stride); b11 = vld1q_f32(matrix_b + 4 + 1 * in_b_stride); b12 = vld1q_f32(matrix_b + 8 + 1 * in_b_stride); b13 = vld1q_f32(matrix_b + 12 + 1 * in_b_stride); acc0 = vmlaq_lane_f32(acc0, b00, a0l, 0); acc1 = vmlaq_lane_f32(acc1, b01, a0l, 0); acc2 = vmlaq_lane_f32(acc2, b02, a0l, 0); acc3 = vmlaq_lane_f32(acc3, b03, a0l, 0); acc0 = vmlaq_lane_f32(acc0, b10, a0l, 1); acc1 = vmlaq_lane_f32(acc1, b11, a0l, 1); acc2 = vmlaq_lane_f32(acc2, b12, a0l, 1); acc3 = vmlaq_lane_f32(acc3, b13, a0l, 1); vec_a += 2; matrix_b += 2 * in_b_stride; } for(; vec_a < vec_a_end_addr; ++vec_a) { const float a0 = *vec_a; const float32x4_t b00 = vld1q_f32(matrix_b + 0 + 0 * in_b_stride); const float32x4_t b01 = vld1q_f32(matrix_b + 4 + 0 * in_b_stride); const float32x4_t b02 = vld1q_f32(matrix_b + 8 + 0 * in_b_stride); const float32x4_t b03 = vld1q_f32(matrix_b + 12 + 0 * in_b_stride); acc0 = vmlaq_n_f32(acc0, b00, a0); acc1 = vmlaq_n_f32(acc1, b01, a0); acc2 = vmlaq_n_f32(acc2, b02, a0); acc3 = vmlaq_n_f32(acc3, b03, a0); matrix_b += in_b_stride; } // Multiply by the weight of matrix product (alpha) if(multiply_alpha) { acc0 = vmulq_f32(acc0, alpha_f32); acc1 = vmulq_f32(acc1, alpha_f32); acc2 = vmulq_f32(acc2, alpha_f32); acc3 = vmulq_f32(acc3, alpha_f32); } const auto vec_out = reinterpret_cast(out.ptr()) + x; vst1q_f32(vec_out + 0, acc0); vst1q_f32(vec_out + 4, acc1); vst1q_f32(vec_out + 8, acc2); vst1q_f32(vec_out + 12, acc3); } // Left-over loop for(; x < window_end_x; ++x) { if(x > width_matrix_b) { return; } float32x4_t vacc = vdupq_n_f32(0.f); auto vec_a = reinterpret_cast(ina.ptr()); auto matrix_b = reinterpret_cast(inb.ptr()) + x; #if __arm__ asm volatile("PLD [%0, #128*4]" ::"r"(reinterpret_cast(vec_a))); asm volatile("PLD [%0, #128*4]" ::"r"(reinterpret_cast(matrix_b))); asm volatile("PLD [%0, #128*4]" ::"r"(reinterpret_cast(matrix_b + in_b_stride))); #endif /* __arm__ */ auto vec_a_end_addr = vec_a + num_elems_vec_a; for(; vec_a <= (vec_a_end_addr - 4); vec_a += 4) { const float32x4_t a0l = vld1q_f32(vec_a); const float32x4_t b_col = { *(matrix_b + 0 * in_b_stride), *(matrix_b + 1 * in_b_stride), *(matrix_b + 2 * in_b_stride), *(matrix_b + 3 * in_b_stride), }; #if __arm__ asm volatile("PLD [%0, #128*4]" ::"r"(reinterpret_cast(vec_a))); asm volatile("PLD [%0, #128*1]" ::"r"(reinterpret_cast(matrix_b + 1 * in_b_stride))); asm volatile("PLD [%0, #128*1]" ::"r"(reinterpret_cast(matrix_b + 2 * in_b_stride))); asm volatile("PLD [%0, #128*1]" ::"r"(reinterpret_cast(matrix_b + 3 * in_b_stride))); asm volatile("PLD [%0, #128*1]" ::"r"(reinterpret_cast(matrix_b + 4 * in_b_stride))); #endif /* __arm__ */ vacc = vmlaq_f32(vacc, b_col, a0l); matrix_b += 4 * in_b_stride; } float acc = vgetq_lane_f32(vacc, 0) + vgetq_lane_f32(vacc, 1) + vgetq_lane_f32(vacc, 2) + vgetq_lane_f32(vacc, 3); for(; vec_a < vec_a_end_addr; ++vec_a) { const float a0 = *vec_a; const float b00 = *matrix_b; acc += b00 * a0; matrix_b += in_b_stride; } // Multiply by the weight of matrix product (alpha) if(multiply_alpha) { acc *= alpha; } const auto vec_out = reinterpret_cast(out.ptr()) + x; *vec_out = acc; } }, ina, inb, out); } void matrix_matrix_multiply_f32(const ITensor *input0, const ITensor *input1, ITensor *output, const Window &window, float alpha) { const int out_width = static_cast(output->info()->dimension(0)); const int out_height = static_cast(output->info()->dimension(1)); const size_t in_b_stride = input1->info()->strides_in_bytes()[1] / data_size_from_type(input1->info()->data_type()); const size_t out_stride1 = output->info()->strides_in_bytes()[1] / data_size_from_type(output->info()->data_type()); const size_t out_stride2 = out_stride1 * 2; const size_t out_stride3 = out_stride1 * 3; const int num_elems_matrix_b_x = input1->info()->dimension(0); // Set step_x and step_y for matrix A. Scale by a factor of 4 the Y range as the input interleaved matrix A has 4 times less the rows of the output matrix Window win_a(window); win_a.set(Window::DimX, Window::Dimension(0, 0, 0)); win_a.set(Window::DimY, Window::Dimension(window.y().start() / 4, std::max(window.y().end() / 4, 1), 1)); Window win_b; // Don't slice matrix B along the z dimension if matrix B has just 2 dimensions and matrix A more than 2 // This scenario can happen when the the matrix multiplication is used to perform a convolution operation if(input1->info()->num_dimensions() >= 3) { win_b = window; } // Set step_x and step_y for matrix B. Scale by a factor of 4 the X range as the input transposed matrix A has 4 times less the cols of the output matrix // The step along the x direction is 2 times the in_b_stride because for each iteration we compute 2 blocks of size 4x4 win_b.set(Window::DimX, Window::Dimension(window.x().start() / 4, window.x().end() / 4, 2 * in_b_stride)); win_b.set(Window::DimY, Window::Dimension(0, 0, 0)); Iterator ina(input0, win_a); Iterator inb(input1, win_b); Iterator out(output, window); const bool multiply_alpha = !(helpers::float_ops::is_one(alpha)); const float32x4_t alpha_f32 = vdupq_n_f32(alpha); // The implementation assumes that the matrix A and Matrix B have been reshaped respectively with NEGEMMInterleave4x4 and NEGEMMTranspose1xW // The reshaping of the matrices helps to have a cache friendly implementation and helps to avoid the data re-arrangements needed for computing 16x4 elements per iteration // All the values needed for computing a single 4x4 block will be read from consecutive memory positions execute_window_loop(window, [&](const Coordinates & id) { auto mtx_a0 = reinterpret_cast(ina.ptr()); auto mtx_b0 = reinterpret_cast(inb.ptr()); auto mtx_b1 = mtx_b0 + in_b_stride; float32x4_t acc00 = vdupq_n_f32(0.f); float32x4_t acc10 = vdupq_n_f32(0.f); float32x4_t acc20 = vdupq_n_f32(0.f); float32x4_t acc30 = vdupq_n_f32(0.f); float32x4_t acc01 = vdupq_n_f32(0.f); float32x4_t acc11 = vdupq_n_f32(0.f); float32x4_t acc21 = vdupq_n_f32(0.f); float32x4_t acc31 = vdupq_n_f32(0.f); #if __arm__ asm volatile("PLD [%0, #128*1]" ::"r"(reinterpret_cast(mtx_a0))); asm volatile("PLD [%0, #128*1]" ::"r"(reinterpret_cast(mtx_b0))); asm volatile("PLD [%0, #128*1]" ::"r"(reinterpret_cast(mtx_b1))); #endif /* __arm__ */ auto mtx_b0_end_addr = mtx_b0 + num_elems_matrix_b_x; for(; mtx_b0 <= (mtx_b0_end_addr - 32);) { float32x4_t a0 = vld1q_dup_f32(mtx_a0 + 0); float32x4_t a1 = vld1q_dup_f32(mtx_a0 + 1); float32x4_t a2 = vld1q_dup_f32(mtx_a0 + 2); float32x4_t a3 = vld1q_dup_f32(mtx_a0 + 3); float32x4_t b00 = vld1q_f32(mtx_b0); float32x4_t b10 = vld1q_f32(mtx_b1); float32x4_t b01 = vld1q_f32(mtx_b0 + 4); float32x4_t b11 = vld1q_f32(mtx_b1 + 4); #if __arm__ asm volatile("PLD [%0, #128*4]" ::"r"(reinterpret_cast(mtx_a0))); asm volatile("PLD [%0, #128*4]" ::"r"(reinterpret_cast(mtx_b0))); asm volatile("PLD [%0, #128*4]" ::"r"(reinterpret_cast(mtx_b1))); #endif /* __arm__ */ // 4x4 block 0 acc00 = vmlaq_f32(acc00, b00, a0); acc10 = vmlaq_f32(acc10, b00, a1); acc20 = vmlaq_f32(acc20, b00, a2); acc30 = vmlaq_f32(acc30, b00, a3); float32x4_t a4 = vld1q_dup_f32(mtx_a0 + 4); float32x4_t a5 = vld1q_dup_f32(mtx_a0 + 5); float32x4_t a6 = vld1q_dup_f32(mtx_a0 + 6); float32x4_t a7 = vld1q_dup_f32(mtx_a0 + 7); // 4x4 block 1 acc01 = vmlaq_f32(acc01, b10, a0); acc11 = vmlaq_f32(acc11, b10, a1); acc21 = vmlaq_f32(acc21, b10, a2); acc31 = vmlaq_f32(acc31, b10, a3); // 4x4 block 0 acc00 = vmlaq_f32(acc00, b01, a4); acc10 = vmlaq_f32(acc10, b01, a5); acc20 = vmlaq_f32(acc20, b01, a6); acc30 = vmlaq_f32(acc30, b01, a7); // 4x4 block 1 acc01 = vmlaq_f32(acc01, b11, a4); acc11 = vmlaq_f32(acc11, b11, a5); acc21 = vmlaq_f32(acc21, b11, a6); acc31 = vmlaq_f32(acc31, b11, a7); mtx_a0 += 8; mtx_b0 += 8; mtx_b1 += 8; a0 = vld1q_dup_f32(mtx_a0 + 0); a1 = vld1q_dup_f32(mtx_a0 + 1); a2 = vld1q_dup_f32(mtx_a0 + 2); a3 = vld1q_dup_f32(mtx_a0 + 3); b00 = vld1q_f32(mtx_b0); b10 = vld1q_f32(mtx_b1); b01 = vld1q_f32(mtx_b0 + 4); b11 = vld1q_f32(mtx_b1 + 4); // 4x4 block 0 acc00 = vmlaq_f32(acc00, b00, a0); acc10 = vmlaq_f32(acc10, b00, a1); acc20 = vmlaq_f32(acc20, b00, a2); acc30 = vmlaq_f32(acc30, b00, a3); a4 = vld1q_dup_f32(mtx_a0 + 4); a5 = vld1q_dup_f32(mtx_a0 + 5); a6 = vld1q_dup_f32(mtx_a0 + 6); a7 = vld1q_dup_f32(mtx_a0 + 7); // 4x4 block 1 acc01 = vmlaq_f32(acc01, b10, a0); acc11 = vmlaq_f32(acc11, b10, a1); acc21 = vmlaq_f32(acc21, b10, a2); acc31 = vmlaq_f32(acc31, b10, a3); // 4x4 block 0 acc00 = vmlaq_f32(acc00, b01, a4); acc10 = vmlaq_f32(acc10, b01, a5); acc20 = vmlaq_f32(acc20, b01, a6); acc30 = vmlaq_f32(acc30, b01, a7); // 4x4 block 1 acc01 = vmlaq_f32(acc01, b11, a4); acc11 = vmlaq_f32(acc11, b11, a5); acc21 = vmlaq_f32(acc21, b11, a6); acc31 = vmlaq_f32(acc31, b11, a7); mtx_a0 += 8; mtx_b0 += 8; mtx_b1 += 8; a0 = vld1q_dup_f32(mtx_a0 + 0); a1 = vld1q_dup_f32(mtx_a0 + 1); a2 = vld1q_dup_f32(mtx_a0 + 2); a3 = vld1q_dup_f32(mtx_a0 + 3); b00 = vld1q_f32(mtx_b0); b10 = vld1q_f32(mtx_b1); b01 = vld1q_f32(mtx_b0 + 4); b11 = vld1q_f32(mtx_b1 + 4); #if __arm__ asm volatile("PLD [%0, #128*4]" ::"r"(reinterpret_cast(mtx_a0))); asm volatile("PLD [%0, #128*4]" ::"r"(reinterpret_cast(mtx_b0))); asm volatile("PLD [%0, #128*4]" ::"r"(reinterpret_cast(mtx_b1))); #endif /* __arm__ */ // 4x4 block 0 acc00 = vmlaq_f32(acc00, b00, a0); acc10 = vmlaq_f32(acc10, b00, a1); acc20 = vmlaq_f32(acc20, b00, a2); acc30 = vmlaq_f32(acc30, b00, a3); a4 = vld1q_dup_f32(mtx_a0 + 4); a5 = vld1q_dup_f32(mtx_a0 + 5); a6 = vld1q_dup_f32(mtx_a0 + 6); a7 = vld1q_dup_f32(mtx_a0 + 7); // 4x4 block 1 acc01 = vmlaq_f32(acc01, b10, a0); acc11 = vmlaq_f32(acc11, b10, a1); acc21 = vmlaq_f32(acc21, b10, a2); acc31 = vmlaq_f32(acc31, b10, a3); // 4x4 block 0 acc00 = vmlaq_f32(acc00, b01, a4); acc10 = vmlaq_f32(acc10, b01, a5); acc20 = vmlaq_f32(acc20, b01, a6); acc30 = vmlaq_f32(acc30, b01, a7); // 4x4 block 1 acc01 = vmlaq_f32(acc01, b11, a4); acc11 = vmlaq_f32(acc11, b11, a5); acc21 = vmlaq_f32(acc21, b11, a6); acc31 = vmlaq_f32(acc31, b11, a7); mtx_a0 += 8; mtx_b0 += 8; mtx_b1 += 8; a0 = vld1q_dup_f32(mtx_a0 + 0); a1 = vld1q_dup_f32(mtx_a0 + 1); a2 = vld1q_dup_f32(mtx_a0 + 2); a3 = vld1q_dup_f32(mtx_a0 + 3); b00 = vld1q_f32(mtx_b0); b10 = vld1q_f32(mtx_b1); b01 = vld1q_f32(mtx_b0 + 4); b11 = vld1q_f32(mtx_b1 + 4); // 4x4 block 0 acc00 = vmlaq_f32(acc00, b00, a0); acc10 = vmlaq_f32(acc10, b00, a1); acc20 = vmlaq_f32(acc20, b00, a2); acc30 = vmlaq_f32(acc30, b00, a3); a4 = vld1q_dup_f32(mtx_a0 + 4); a5 = vld1q_dup_f32(mtx_a0 + 5); a6 = vld1q_dup_f32(mtx_a0 + 6); a7 = vld1q_dup_f32(mtx_a0 + 7); // 4x4 block 1 acc01 = vmlaq_f32(acc01, b10, a0); acc11 = vmlaq_f32(acc11, b10, a1); acc21 = vmlaq_f32(acc21, b10, a2); acc31 = vmlaq_f32(acc31, b10, a3); // 4x4 block 0 acc00 = vmlaq_f32(acc00, b01, a4); acc10 = vmlaq_f32(acc10, b01, a5); acc20 = vmlaq_f32(acc20, b01, a6); acc30 = vmlaq_f32(acc30, b01, a7); // 4x4 block 1 acc01 = vmlaq_f32(acc01, b11, a4); acc11 = vmlaq_f32(acc11, b11, a5); acc21 = vmlaq_f32(acc21, b11, a6); acc31 = vmlaq_f32(acc31, b11, a7); mtx_a0 += 8; mtx_b0 += 8; mtx_b1 += 8; } for(; mtx_b0 < mtx_b0_end_addr;) { float32x4_t a0 = vld1q_dup_f32(mtx_a0 + 0); float32x4_t a1 = vld1q_dup_f32(mtx_a0 + 1); float32x4_t a2 = vld1q_dup_f32(mtx_a0 + 2); float32x4_t a3 = vld1q_dup_f32(mtx_a0 + 3); float32x4_t b00 = vld1q_f32(mtx_b0); float32x4_t b10 = vld1q_f32(mtx_b1); #if __arm__ asm volatile("PLD [%0, #128*2]" ::"r"(reinterpret_cast(mtx_a0))); asm volatile("PLD [%0, #128*2]" ::"r"(reinterpret_cast(mtx_b0))); asm volatile("PLD [%0, #128*2]" ::"r"(reinterpret_cast(mtx_b1))); #endif /* __arm__ */ // 4x4 block 0 acc00 = vmlaq_f32(acc00, b00, a0); acc10 = vmlaq_f32(acc10, b00, a1); acc20 = vmlaq_f32(acc20, b00, a2); acc30 = vmlaq_f32(acc30, b00, a3); // 4x4 block 1 acc01 = vmlaq_f32(acc01, b10, a0); acc11 = vmlaq_f32(acc11, b10, a1); acc21 = vmlaq_f32(acc21, b10, a2); acc31 = vmlaq_f32(acc31, b10, a3); mtx_a0 += 4; mtx_b0 += 4; mtx_b1 += 4; } // Multiply by the weight of matrix product (alpha) if(multiply_alpha) { acc00 = vmulq_f32(acc00, alpha_f32); acc10 = vmulq_f32(acc10, alpha_f32); acc20 = vmulq_f32(acc20, alpha_f32); acc30 = vmulq_f32(acc30, alpha_f32); acc01 = vmulq_f32(acc01, alpha_f32); acc11 = vmulq_f32(acc11, alpha_f32); acc21 = vmulq_f32(acc21, alpha_f32); acc31 = vmulq_f32(acc31, alpha_f32); } const auto mtx_out0 = reinterpret_cast(out.ptr()); const auto mtx_out1 = mtx_out0 + 4; if(id.x() < (out_width - 8)) { vst1q_f32(mtx_out0, acc00); vst1q_f32(mtx_out1, acc01); if(id.y() + 1 < out_height) { vst1q_f32(mtx_out0 + out_stride1, acc10); vst1q_f32(mtx_out1 + out_stride1, acc11); if(id.y() + 2 < out_height) { vst1q_f32(mtx_out0 + out_stride2, acc20); vst1q_f32(mtx_out1 + out_stride2, acc21); if(id.y() + 3 < out_height) { vst1q_f32(mtx_out0 + out_stride3, acc30); vst1q_f32(mtx_out1 + out_stride3, acc31); } } } } else if(id.x() < (out_width - 4)) { vst1q_f32(mtx_out0, acc00); if(id.y() + 1 < out_height) { vst1q_f32(mtx_out0 + out_stride1, acc10); if(id.y() + 2 < out_height) { vst1q_f32(mtx_out0 + out_stride2, acc20); if(id.y() + 3 < out_height) { vst1q_f32(mtx_out0 + out_stride3, acc30); } } } // Left-over columns const int columns_left = out_width - id.x() - 4; for(auto x = 0; x < columns_left; ++x) { *(mtx_out1 + x) = acc01[x]; if(id.y() + 1 < out_height) { *(mtx_out1 + x + out_stride1) = acc11[x]; if(id.y() + 2 < out_height) { *(mtx_out1 + x + out_stride2) = acc21[x]; if(id.y() + 3 < out_height) { *(mtx_out1 + x + out_stride3) = acc31[x]; } } } } } else { // Left-over columns const int columns_left = out_width - id.x(); for(int x = 0; x < columns_left; ++x) { *(mtx_out0 + x) = acc00[x]; if(id.y() + 1 < out_height) { *(mtx_out0 + x + out_stride1) = acc10[x]; if(id.y() + 2 < out_height) { *(mtx_out0 + x + out_stride2) = acc20[x]; if(id.y() + 3 < out_height) { *(mtx_out0 + x + out_stride3) = acc30[x]; } } } } } }, ina, inb, out); } #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC void matrix_matrix_multiply_f16(const ITensor *input0, const ITensor *input1, ITensor *output, const Window &window, float alpha) { const int out_width = static_cast(output->info()->dimension(0)); const int out_height = static_cast(output->info()->dimension(1)); const size_t in_b_stride = input1->info()->strides_in_bytes()[1] / data_size_from_type(input1->info()->data_type()); const size_t out_stride = output->info()->strides_in_bytes()[1] / data_size_from_type(output->info()->data_type()); const int num_elems_matrix_b_x = input1->info()->dimension(0); // Set step_x and step_y for matrix A. Scale by a factor of 4 the Y range as the input interleaved matrix A has 4 times less the rows of the output matrix Window win_a(window); win_a.set(Window::DimX, Window::Dimension(0, 0, 0)); win_a.set(Window::DimY, Window::Dimension(window.y().start() / 4, std::max(window.y().end() / 4, 1), 1)); Window win_b; // Don't slice matrix B along the z dimension if matrix B has just 2 dimensions and matrix A more than 2 // This scenario can happen when the the matrix multiplication is used to perform a convolution operation if(input1->info()->num_dimensions() >= 3) { win_b = window; } // Set step_x and step_y for matrix B. Scale by a factor of 8 the X range as the input transposed matrix A has 8 times less the cols of the output matrix win_b.set(Window::DimX, Window::Dimension(window.x().start() / 8, window.x().end() / 8, in_b_stride)); win_b.set(Window::DimY, Window::Dimension(0, 1, 0)); Iterator ina(input0, win_a); Iterator inb(input1, win_b); Iterator out(output, window); const bool multiply_alpha = !(helpers::float_ops::is_one(alpha)); const float16x8_t alpha_f16 = vdupq_n_f16(alpha); execute_window_loop(window, [&](const Coordinates & id) { const auto *mtx_a0 = reinterpret_cast(ina.ptr()); const auto *mtx_b0 = reinterpret_cast(inb.ptr()); auto *mtx_out = reinterpret_cast(out.ptr()); float16x8x4_t c = { { vdupq_n_f16(0.f), vdupq_n_f16(0.f), vdupq_n_f16(0.f), vdupq_n_f16(0.f) } }; /* This kernel puts the values in a 4x4 block of Matrix A on the same row (Interleaved values) |a00 a01 a02 a03 | a04 a05 a06 a07| |a10 a11 a12 a13 | a14 a15 a16 a17| |a20 a21 a22 a23 | a24 a25 a26 a27| = | a00 a10 a20 a30 || a01 a11 a21 a31 || a02 a12 a22 a32 || a03 a13 a23 a33 | a40 a50 a60 a70 | ... |a30 a31 a32 a33 | a34 a35 a36 a37| | a04 a14 a24 a34 || a05 a15 a25 a35 || a06 a15 a26 a36 || a07 a17 a27 a37 | a44 a54 a64 a74 | ... |a40 a41 a42 a43 | a44 a45 a46 a47| |a50 a51 a52 a53 | a54 a55 a56 a57| |a60 a61 a62 a63 | a64 a65 a66 a67| |a70 a71 a72 a73 | a74 a75 a76 a77| After this operation, the output matrix will have the following shape: [ height * 4, width / 4 ] B Matrix has been transposed as shown below |b00 b01 b02 b03 b04 b05 b06 b07| |b10 b11 b12 b13 b14 b15 b16 b17| |b20 b21 b22 b23 b24 b25 b26 b27| |b30 b31 b32 b33 b34 b35 b36 b37| -------------------> |b00 b01 b02 b03 b04 b05 b06 b07||b10 b11 b12 b13 b14 b15 b16 b17||b20 b21 b22 b23 b24 b25 b26 b27||b30 b31 b32 b33 b34 b35 b36 b37| c.val[0][0] = a00*b00 + a01*b10 + a02*b20 + a03*b30 c.val[0][1] = a00*b01 + a01*b11 + a02*b21 + a03*b31 The size of the output tensor's XY-plane must be the following shape [ width * 8, height / 8 ]. All other dimensions must have the same size. */ const float16_t *mtx_b0_end_addr = mtx_b0 + num_elems_matrix_b_x; for(; mtx_b0 <= (mtx_b0_end_addr - 32);) { const float16x8_t p00 = vld1q_f16(mtx_a0); const float16x8_t p02 = vld1q_f16(mtx_a0 + 8); const float16x8_t q00 = vld1q_f16(mtx_b0); const float16x8_t q02 = vld1q_f16(mtx_b0 + 8); const float16x8_t q04 = vld1q_f16(mtx_b0 + 16); const float16x8_t q06 = vld1q_f16(mtx_b0 + 24); c.val[0] = vaddq_f16(c.val[0], vmulq_n_f16(q00, vgetq_lane_f16(p00, 0))); c.val[1] = vaddq_f16(c.val[1], vmulq_n_f16(q00, vgetq_lane_f16(p00, 1))); c.val[2] = vaddq_f16(c.val[2], vmulq_n_f16(q00, vgetq_lane_f16(p00, 2))); c.val[3] = vaddq_f16(c.val[3], vmulq_n_f16(q00, vgetq_lane_f16(p00, 3))); c.val[0] = vaddq_f16(c.val[0], vmulq_n_f16(q02, vgetq_lane_f16(p00, 4))); c.val[1] = vaddq_f16(c.val[1], vmulq_n_f16(q02, vgetq_lane_f16(p00, 5))); c.val[2] = vaddq_f16(c.val[2], vmulq_n_f16(q02, vgetq_lane_f16(p00, 6))); c.val[3] = vaddq_f16(c.val[3], vmulq_n_f16(q02, vgetq_lane_f16(p00, 7))); c.val[0] = vaddq_f16(c.val[0], vmulq_n_f16(q04, vgetq_lane_f16(p02, 0))); c.val[1] = vaddq_f16(c.val[1], vmulq_n_f16(q04, vgetq_lane_f16(p02, 1))); c.val[2] = vaddq_f16(c.val[2], vmulq_n_f16(q04, vgetq_lane_f16(p02, 2))); c.val[3] = vaddq_f16(c.val[3], vmulq_n_f16(q04, vgetq_lane_f16(p02, 3))); c.val[0] = vaddq_f16(c.val[0], vmulq_n_f16(q06, vgetq_lane_f16(p02, 4))); c.val[1] = vaddq_f16(c.val[1], vmulq_n_f16(q06, vgetq_lane_f16(p02, 5))); c.val[2] = vaddq_f16(c.val[2], vmulq_n_f16(q06, vgetq_lane_f16(p02, 6))); c.val[3] = vaddq_f16(c.val[3], vmulq_n_f16(q06, vgetq_lane_f16(p02, 7))); mtx_a0 += 16; mtx_b0 += 32; } for(; mtx_b0 < mtx_b0_end_addr;) { const float16x4_t p00 = vld1_f16(mtx_a0); const float16x8_t q00 = vld1q_f16(mtx_b0); c.val[0] = vaddq_f16(c.val[0], vmulq_n_f16(q00, vget_lane_f16(p00, 0))); c.val[1] = vaddq_f16(c.val[1], vmulq_n_f16(q00, vget_lane_f16(p00, 1))); c.val[2] = vaddq_f16(c.val[2], vmulq_n_f16(q00, vget_lane_f16(p00, 2))); c.val[3] = vaddq_f16(c.val[3], vmulq_n_f16(q00, vget_lane_f16(p00, 3))); mtx_a0 += 4; mtx_b0 += 8; } if(multiply_alpha) { c.val[0] = vmulq_f16(c.val[0], alpha_f16); c.val[1] = vmulq_f16(c.val[1], alpha_f16); c.val[2] = vmulq_f16(c.val[2], alpha_f16); c.val[3] = vmulq_f16(c.val[3], alpha_f16); } if(id.x() < (out_width - 8)) { vst1q_f16(mtx_out, c.val[0]); if(id.y() + 1 < out_height) { vst1q_f16(mtx_out + 1 * out_stride, c.val[1]); if(id.y() + 2 < out_height) { vst1q_f16(mtx_out + 2 * out_stride, c.val[2]); if(id.y() + 3 < out_height) { vst1q_f16(mtx_out + 3 * out_stride, c.val[3]); } } } } else { // Left-over columns const int columns_left = out_width - id.x(); for(int x = 0; x < columns_left; ++x) { *(mtx_out + x) = c.val[0][x]; if(id.y() + 1 < out_height) { *(mtx_out + x + 1 * out_stride) = c.val[1][x]; if(id.y() + 2 < out_height) { *(mtx_out + x + 2 * out_stride) = c.val[2][x]; if(id.y() + 3 < out_height) { *(mtx_out + x + 3 * out_stride) = c.val[3][x]; } } } } } }, ina, inb, out); } #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */ inline Status validate_arguments(const ITensorInfo *input0, const ITensorInfo *input1, const ITensorInfo *output, float alpha, bool is_interleaved, const GEMMReshapeInfo &reshape_info) { ARM_COMPUTE_UNUSED(alpha); ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input0); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input0, 1, DataType::F16, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input0, input1, output); if(!is_interleaved) { ARM_COMPUTE_RETURN_ERROR_ON(input0->dimension(0) != input1->dimension(1)); if(output->total_size() != 0) { ARM_COMPUTE_RETURN_ERROR_ON(input1->dimension(0) != output->dimension(0)); ARM_COMPUTE_RETURN_ERROR_ON(input0->dimension(1) != output->dimension(1)); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input0, output); } } else { const int m = reshape_info.m(); const int n = reshape_info.n(); const int k = reshape_info.k(); const int mult_transpose1xW_width = reshape_info.mult_transpose1xW_width(); const int mult_interleave4x4_height = reshape_info.mult_interleave4x4_height(); /* Interleave */ TensorShape tensor_shape0{ input0->tensor_shape() }; tensor_shape0.set(0, k); tensor_shape0.set(1, m); const TensorInfo tensor_info0 = input0->clone()->set_tensor_shape(tensor_shape0); const TensorInfo tensor_info_reshaped0 = input0->clone()->set_tensor_shape(misc::shape_calculator::compute_interleaved_shape(tensor_info0, mult_interleave4x4_height)); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input0, &tensor_info_reshaped0); if(n != 0) /* Transpose */ { TensorShape tensor_shape1{ input1->tensor_shape() }; tensor_shape1.set(0, n); tensor_shape1.set(1, k); const TensorInfo tensor_info1 = input1->clone()->set_tensor_shape(tensor_shape1); const TensorInfo tensor_info_reshaped1 = input1->clone()->set_tensor_shape(misc::shape_calculator::compute_transpose1xW_with_element_size_shape(tensor_info1, mult_transpose1xW_width)); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input1, &tensor_info_reshaped1); } if(output->total_size() != 0) { if(n != 0) { ARM_COMPUTE_RETURN_ERROR_ON(output->dimension(0) != static_cast(n)); } ARM_COMPUTE_RETURN_ERROR_ON(output->dimension(1) != static_cast(m)); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input0, output); } } return Status{}; } } // namespace NEGEMMMatrixMultiplyKernel::NEGEMMMatrixMultiplyKernel() : _input0(nullptr), _input1(nullptr), _output(nullptr), _alpha(1.0f) { } void NEGEMMMatrixMultiplyKernel::configure(const ITensor *input0, const ITensor *input1, ITensor *output, float alpha, bool is_interleaved, const GEMMReshapeInfo &reshape_info) { ARM_COMPUTE_ERROR_ON_NULLPTR(input0, input1, output); // Output tensor auto inizialitation if not yet initialized TensorShape tensor_shape{ input0->info()->tensor_shape() }; tensor_shape.set(0, is_interleaved ? reshape_info.n() : input1->info()->dimension(0)); tensor_shape.set(1, is_interleaved ? reshape_info.m() : input0->info()->dimension(1)); auto_init_if_empty(*output->info(), input0->info()->clone()->set_tensor_shape(tensor_shape)); // Perform validate step ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input0->info(), input1->info(), output->info(), alpha, is_interleaved, reshape_info)); _input0 = input0; _input1 = input1; _output = output; _alpha = alpha; // Configure kernel window Window win{}; // Check if the output tensor is a vector. If so,the kernel runs the vector-matrix multiplication if((output->info()->dimension(1) == 1)) { const unsigned int num_elems_processed_per_iteration_x = (input0->info()->data_type() == DataType::F32) ? 16 : 32; win = calculate_max_window(*output->info(), Steps(num_elems_processed_per_iteration_x)); } else { constexpr unsigned int num_elems_processed_per_iteration_x = 8; constexpr unsigned int num_elems_processed_per_iteration_y = 4; win = calculate_max_window(*output->info(), Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y)); } Coordinates coord; coord.set_num_dimensions(output->info()->num_dimensions()); output->info()->set_valid_region(ValidRegion(coord, output->info()->tensor_shape())); INEKernel::configure(win); } Status NEGEMMMatrixMultiplyKernel::validate(const ITensorInfo *input0, const ITensorInfo *input1, const ITensorInfo *output, float alpha, bool is_interleaved, const GEMMReshapeInfo &reshape_info) { ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input0, input1, output, alpha, is_interleaved, reshape_info)); return Status{}; } void NEGEMMMatrixMultiplyKernel::run(const Window &window, const ThreadInfo &info) { ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window); // Check if the output tensor is a vector. If so,the kernel runs the vector-matrix multiplication const bool is_output_vector = (_output->info()->dimension(1) == 1); switch(_input0->info()->data_type()) { case DataType::F32: { is_output_vector ? vector_matrix_multiply_f32(_input0, _input1, _output, window, info, _alpha) : matrix_matrix_multiply_f32(_input0, _input1, _output, window, _alpha); break; } #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC case DataType::F16: { is_output_vector ? vector_matrix_multiply_f16(_input0, _input1, _output, window, info, _alpha) : matrix_matrix_multiply_f16(_input0, _input1, _output, window, _alpha); break; } #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */ default: { ARM_COMPUTE_ERROR("Data type not supported"); break; } } } } // namespace arm_compute