/* * Copyright (c) 2017-2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/NEON/kernels/NEGEMMLowpQuantizeDownInt32ToUint8ScaleKernel.h" #include "arm_compute/core/AccessWindowStatic.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/ITensor.h" #include "arm_compute/core/Types.h" #include "arm_compute/core/Utils.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/Window.h" #include #include #include using namespace arm_compute; namespace { Status validate_arguments(const ITensorInfo *input, const ITensorInfo *bias, const ITensorInfo *output, int min, int max) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::S32); ARM_COMPUTE_RETURN_ERROR_ON(max > 255); ARM_COMPUTE_RETURN_ERROR_ON(min < 0 || min > max); // Check biases if exist if(bias != nullptr) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, bias); ARM_COMPUTE_RETURN_ERROR_ON(bias->num_dimensions() > 1); ARM_COMPUTE_RETURN_ERROR_ON(input->dimension(0) != bias->dimension(0)); } if(output->total_size() != 0) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::QASYMM8); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input, output); } return Status{}; } std::pair validate_and_configure_window(ITensorInfo *input, ITensorInfo *bias, ITensorInfo *output) { // Note: This kernel performs 16 elements per iteration. // However, since we use a left-over for loop, we cannot have any read or write out of memory // For this reason num_elems_processed_per_iteration is set to 1 constexpr unsigned int num_elems_processed_per_iteration = 1; // Configure kernel window Window win = calculate_max_window(*output, Steps(num_elems_processed_per_iteration)); AccessWindowHorizontal input_access(input, 0, num_elems_processed_per_iteration); bool window_changed = update_window_and_padding(win, input_access); if(output->total_size() != 0) { AccessWindowHorizontal output_result_access(output, 0, num_elems_processed_per_iteration); window_changed = window_changed || update_window_and_padding(win, output_result_access); output_result_access.set_valid_region(win, ValidRegion(Coordinates(), output->tensor_shape())); } if(bias != nullptr) { AccessWindowStatic bias_access(bias, 0, 0, bias->dimension(0), bias->dimension(1)); window_changed = window_changed || update_window_and_padding(win, bias_access); } Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{}; return std::make_pair(err, win); } inline void scale_input(int32x4x4_t &in_s32, int32x4_t result_offset_s32, int32_t result_mult_int) { // Add the offset terms to GEMM's result in_s32.val[0] = vaddq_s32(in_s32.val[0], result_offset_s32); in_s32.val[1] = vaddq_s32(in_s32.val[1], result_offset_s32); in_s32.val[2] = vaddq_s32(in_s32.val[2], result_offset_s32); in_s32.val[3] = vaddq_s32(in_s32.val[3], result_offset_s32); // Multiply by result_mult_int in_s32.val[0] = vmulq_n_s32(in_s32.val[0], result_mult_int); in_s32.val[1] = vmulq_n_s32(in_s32.val[1], result_mult_int); in_s32.val[2] = vmulq_n_s32(in_s32.val[2], result_mult_int); in_s32.val[3] = vmulq_n_s32(in_s32.val[3], result_mult_int); } template inline uint8x16_t finalize_quantization(int32x4x4_t &in_s32, int32x4_t result_shift_s32, uint8x16_t min_u8, uint8x16_t max_u8) { const static int32x4_t zero_s32 = vdupq_n_s32(0); // Shift final result (negative value shift right) in_s32.val[0] = vshlq_s32(in_s32.val[0], result_shift_s32); in_s32.val[1] = vshlq_s32(in_s32.val[1], result_shift_s32); in_s32.val[2] = vshlq_s32(in_s32.val[2], result_shift_s32); in_s32.val[3] = vshlq_s32(in_s32.val[3], result_shift_s32); // Saturate negative values in_s32.val[0] = vmaxq_s32(in_s32.val[0], zero_s32); in_s32.val[1] = vmaxq_s32(in_s32.val[1], zero_s32); in_s32.val[2] = vmaxq_s32(in_s32.val[2], zero_s32); in_s32.val[3] = vmaxq_s32(in_s32.val[3], zero_s32); // Convert S32 to S16 const int16x8x2_t in_s16 = { { vcombine_s16(vqmovn_s32(in_s32.val[0]), vqmovn_s32(in_s32.val[1])), vcombine_s16(vqmovn_s32(in_s32.val[2]), vqmovn_s32(in_s32.val[3])) } }; // Convert S16 to U8 uint8x16_t out_u8 = vcombine_u8(vqmovun_s16(in_s16.val[0]), vqmovun_s16(in_s16.val[1])); if(is_bounded_relu) { out_u8 = vmaxq_u8(out_u8, min_u8); out_u8 = vminq_u8(out_u8, max_u8); } return out_u8; } } // namespace namespace arm_compute { class Coordinates; } // namespace arm_compute template void NEGEMMLowpQuantizeDownInt32ToUint8ScaleKernel::run(const Window &window) { const int32x4_t result_offset_s32 = vdupq_n_s32(_result_offset); const int32x4_t result_shift_s32 = vdupq_n_s32(-_result_shift); const uint8x16_t min_u8 = vdupq_n_u8(static_cast(_min)); const uint8x16_t max_u8 = vdupq_n_u8(static_cast(_max)); ARM_COMPUTE_UNUSED(min_u8); ARM_COMPUTE_UNUSED(max_u8); const int window_step_x = 16; const auto window_start_x = static_cast(window.x().start()); const auto window_end_x = static_cast(window.x().end()); Window win(window); win.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator in(_input, win); Iterator out(_output, win); if(_bias != nullptr) { Window win_biases; win_biases.set(Window::DimX, Window::Dimension(0, 1, 1)); win_biases.set(Window::DimY, Window::Dimension(0, 1, 1)); Iterator bias(_bias, win_biases); execute_window_loop(win, [&](const Coordinates &) { // Compute 16 elements per iteration int x = window_start_x; for(; x <= (window_end_x - window_step_x); x += window_step_x) { int32x4x4_t in_s32 = { { vld1q_s32(reinterpret_cast(in.ptr()) + x + 0), vld1q_s32(reinterpret_cast(in.ptr()) + x + 4), vld1q_s32(reinterpret_cast(in.ptr()) + x + 8), vld1q_s32(reinterpret_cast(in.ptr()) + x + 12) } }; const int32x4x4_t bias_s32 = { { vld1q_s32(reinterpret_cast(bias.ptr()) + x + 0), vld1q_s32(reinterpret_cast(bias.ptr()) + x + 4), vld1q_s32(reinterpret_cast(bias.ptr()) + x + 8), vld1q_s32(reinterpret_cast(bias.ptr()) + x + 12) } }; // Add the bias to GEMM's result in_s32.val[0] = vaddq_s32(in_s32.val[0], bias_s32.val[0]); in_s32.val[1] = vaddq_s32(in_s32.val[1], bias_s32.val[1]); in_s32.val[2] = vaddq_s32(in_s32.val[2], bias_s32.val[2]); in_s32.val[3] = vaddq_s32(in_s32.val[3], bias_s32.val[3]); // Add the offset terms to GEMM's result and multiply by result_mult_int scale_input(in_s32, result_offset_s32, _result_mult_int); vst1q_u8(out.ptr() + x, finalize_quantization(in_s32, result_shift_s32, min_u8, max_u8)); } // Compute left-over elements for(; x < window_end_x; ++x) { const int bias_value = *(reinterpret_cast(bias.ptr()) + x); int in_value = *(reinterpret_cast(in.ptr()) + x); // Quantize in_value = ((in_value + bias_value + _result_offset) * _result_mult_int) >> _result_shift; // Finalize and store the result if(is_bounded_relu) { *(out.ptr() + x) = static_cast(std::max(_min, std::min(_max, in_value))); } else { *(out.ptr() + x) = static_cast(std::max(0, std::min(255, in_value))); } } }, in, bias, out); } else { execute_window_loop(win, [&](const Coordinates &) { // Compute 16 elements per iteration int x = window_start_x; for(; x <= (window_end_x - window_step_x); x += window_step_x) { int32x4x4_t in_s32 = { { vld1q_s32(reinterpret_cast(in.ptr()) + x + 0), vld1q_s32(reinterpret_cast(in.ptr()) + x + 4), vld1q_s32(reinterpret_cast(in.ptr()) + x + 8), vld1q_s32(reinterpret_cast(in.ptr()) + x + 12) } }; // Add the offset terms to GEMM's result and multiply by result_mult_int scale_input(in_s32, result_offset_s32, _result_mult_int); vst1q_u8(out.ptr() + x, finalize_quantization(in_s32, result_shift_s32, min_u8, max_u8)); } // Compute left-over elements for(; x < window_end_x; ++x) { int in_value = *(reinterpret_cast(in.ptr()) + x); // Quantize in_value = ((in_value + _result_offset) * _result_mult_int) >> _result_shift; // Finalize and store the result if(is_bounded_relu) { *(out.ptr() + x) = static_cast(std::max(_min, std::min(_max, in_value))); } else { *(out.ptr() + x) = static_cast(std::max(0, std::min(255, in_value))); } } }, in, out); } } NEGEMMLowpQuantizeDownInt32ToUint8ScaleKernel::NEGEMMLowpQuantizeDownInt32ToUint8ScaleKernel() : _func(nullptr), _input(nullptr), _bias(nullptr), _output(nullptr), _result_offset(0), _result_mult_int(0), _result_shift(0), _min(0), _max(0) { } void NEGEMMLowpQuantizeDownInt32ToUint8ScaleKernel::configure(const ITensor *input, const ITensor *bias, ITensor *output, int result_offset, int result_mult_int, int result_shift, int min, int max) { // Perform validate step ARM_COMPUTE_ERROR_ON_NULLPTR(input, output); // Output auto inizialitation if not yet initialized auto_init_if_empty(*output->info(), input->info()->clone()->set_data_type(DataType::QASYMM8)); ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), (bias != nullptr) ? bias->info() : nullptr, output->info(), min, max)); _input = input; _bias = bias; _output = output; _result_offset = result_offset; _result_mult_int = result_mult_int; _result_shift = result_shift; _min = min; _max = max; // Configure kernel window auto win_config = validate_and_configure_window(input->info(), (bias != nullptr) ? bias->info() : nullptr, output->info()); ARM_COMPUTE_ERROR_THROW_ON(win_config.first); INEKernel::configure(win_config.second); // Check if we need to clamp the result using min and max const bool is_bounded_relu = ((min != max) && !(min == 0 && max == 255)); _func = is_bounded_relu ? &NEGEMMLowpQuantizeDownInt32ToUint8ScaleKernel::run : &NEGEMMLowpQuantizeDownInt32ToUint8ScaleKernel::run; } Status NEGEMMLowpQuantizeDownInt32ToUint8ScaleKernel::validate(const ITensorInfo *input, const ITensorInfo *bias, const ITensorInfo *output, int min, int max) { ARM_COMPUTE_ERROR_ON_NULLPTR(input, output); ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, bias, output, min, max)); ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input->clone().get(), (bias != nullptr) ? bias->clone().get() : nullptr, output->clone().get()) .first); return Status{}; } void NEGEMMLowpQuantizeDownInt32ToUint8ScaleKernel::run(const Window &window, const ThreadInfo &info) { ARM_COMPUTE_UNUSED(info); ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window); (this->*_func)(window); }